Electrodeposition of Layered Fe/Ni Nanowires in the External Magnetic Field — Morphological and Mössbauer Studies

Main Article Content

U. Klekotka
M. Bielicka
D. Satuła
B. Kalska-Szostko

Abstract

The presented paper shows a successful attempt to obtain layered Fe/Ni nanowires by electrochemical deposition in the anodized alumina matrix in the presence of an external magnetic field oriented parallel or perpendicular to the plane of the electrodes. In the experiment, various numbers and thicknesses of layers were obtained by sequential deposition. For physicochemical characterization, the obtained nanowires were imaged by scanning electron microscopy, and the amount of Fe or Ni was monitored by energy-dispersive X-ray spectroscopy. The crystal structure of the nanowires was characterized by X-ray diffraction. The magnetic properties of these materials were determined by Mössbauer spectroscopy. Analysis of the obtained data allows us to conclude that the presence of the external magnetic field changes the amount of deposited elements in favor of Fe.


 

Article Details

How to Cite
[1]
U. Klekotka, M. Bielicka, D. Satuła, and B. Kalska-Szostko, “Electrodeposition of Layered Fe/Ni Nanowires in the External Magnetic Field — Morphological and Mössbauer Studies”, Acta Phys. Pol. A, vol. 147, no. 4, p. 343, May 2025, doi: 10.12693/APhysPolA.147.343.
Section
Regular segment

References

L.A. Meier, A.E. Alvarez, S.G. García, M.C. del Barrio, Proc. Mater. Sci. 8, 617 (2015), https://doi.org/10.1016/j.mspro.2015.04.116

K.-Z. Gao, H.N. Bertram, IEEE Trans. Magn. 39, 704 (2003), https://doi.org/10.1109/TMAG.2003.808997

T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, J. Fidler, in: Handbook of Advanced Magnetic Materials, Eds. H. Kronmüller, S. Parkin, J.E. Miltat, M.R. Scheinfein, Wiley, 2007, http://doi.org/10.1002/9780470022184.hmm203

H. Baqiah, N.B. Ibrahim, A.H. Shaari, Z.A. Talib, J. Supercond. Nov. Magn. 33, 3535 (2020), https://doi.org/10.1007/s10948-020-05609-9

M. Hernández-Vélez, Thin Solid Films 495, 51 (2006), https://doi.org/10.1016/j.tsf.2005.08.331

I.Z. Rahman, K.M. Razeeb, M. Kamruzzaman, M. Seratoni, J. Mater. Process. Technol. 153-154, 881 (2004), https://doi.org/10.1016/j.jmatprotec.2004.04.168

P.D. McGary, L. Tan, J. Zou, B.J.H. Stadler, P.R. Downey, A.B. Flatau, J. Appl. Phys. 99, 08B310 (2006), https://doi.org/10.1063/1.2167332

Y. Cui, C.M. Lieber, Science 291, 851 (2001), https://doi.org/10.1126/science.291.5505.851

E. Barrigón, L. Hrachowina, M.T. Borgström, Nano Energy 78, 105191 (2020), https://doi.org/10.1016/j.nanoen.2020.105191

P. Christian, F. Von der Kammer, M. Baalousha, T. Hofmann, Ecotoxicology 17, 326 (2008), https://doi.org/10.1007/s10646-008-0213-1

Q.X. Guo, Y. Hachiya, T. Tanaka, M. Nishio, H. Ogawa, J. Lumin. 119-120, 253 (2006), https://doi.org/10.1016/j.jlumin.2005.12.039

Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, Y. Ito, J. Electroanal. Chem. 559, 149 (2003), https://doi.org/10.1016/S0022-0728(03)00157-8

B. Kalska-Szostko, E. Brancewicz, P. Mazalski, J. Sveklo, W. Olszewski, K. Szymański, A. Sidor, Acta Phys. Pol. A 115, 542 (2009)

B. Godbole, N. Badera, S.B. Shrivastava, D. Jain, L.S. Sharath Chandra, V. Ganesan, Phys. Proc. 49, 58 (2013), https://doi.org/10.1016/j.phpro.2013.10.011

X.N. Pham, T.P. Nguyen, T.N. Pham, T.T.N. Tran T.V.T. Tran, Adv. Nat. Sci Nanosci. Nanotechnol. 7, 045010 (2016), https://doi.org/10.1088/2043-6262/7/4/045010

V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A.S. Rouhaghdam, J. Alloys Compd. 691, 841 (2017), https://doi.org/10.1016/j.jallcom.2016.08.329

O. Aaboubi, K. Msellak, Appl. Surf. Sci. 396, 375 (2017), http://doi.org/10.1016/j.apsusc.2016.10.164

A.M. Białostocka, M. Klekotka, U. Klekotka, B. Kalska-Szostko, Eksploat. i Niezawodn. 24, 687 (2022), http://doi.org/10.17531/ein.2022.4.9

D.M. Dryden, T. Sun, R. McCormick, R. Hickey, R. Vidu, P. Stroeve, Electrochim. Acta 220, 595 (2016), https://doi.org/10.1016/j.electacta.2016.10.073

S. Hessami, C.W. Tobias, J. Electrochem. Soc. 136, 3611 (1989), https://doi.org/10.1149/1.2096519

H. Dahms, I.M. Croll, J. Electrochem. Soc. 112, 771 (1965), https://doi.org/10.1149/1.2423692

Z. Li, J. Cai, S. Zhou, Trans. IMF 77, 149 (1999), https://doi.org/10.1080/00202967.1999.11871271

H. Nakano, M. Matsuno, S. Oue, M. Yano, S. Kobayashi, H. Fukushima, Mater. Trans. 45, 3130 (2004), https://doi.org/10.2320/matertrans.45.3130

A.M. Białostocka, U. Klekotka, P. Zabiński, B. Kalska-Szostko, Magnetohydrodynamics 53, 309 (2017), https://doi.org/10.22364/mhd.53.2.10

I. Dobosz, W. Gumowska, M. Czapkiewicz, Arch. Metall. Mater. 64, 983 (2019), https://doi.org/10.24425/amm.2019.129484

S. Shamaila, M. Hassan, R. Sharif, A. Salman, Surf. Rev. Lett. 28, 2150071 (2021), https://doi.org/10.1142/S0218625X21500712

B. Kalska-Szostko, U. Klekotka, W. Olszewski, D. Satuła, J. Magn. Magn. Mater. 484, 67 (2019), https://doi.org/10.1016/j.jmmm.2019.03.016

W. Pepperhoff, M. Acet, in: Constiution and Magnetism of Iron and Its Alloys, 1st ed., Springer, Berlin, 2001, p. 1, http://doi.org/10.1007/978-3-662-04345-5_1

B.B. Nayak, S. Vitta, A.K. Nigam, D. Bahadur, Thin Solid Films 505, 109 (2006), https://doi.org/10.1016/j.tsf.2005.10.018

A. Smirnov, D. Hausner, R. Laffers, D.R. Strongin, M.A. Schoonen, Geochem. Trans. 9, 5 (2008), https://doi.org/10.1186/1467-4866-9-5

B. Kalska-Szostko, U. Wykowska, D. Satuła, Nukleonika 60, 63 (2015), https://doi.org/10.1515/nuka-2015-0015

N.N. Greenwood T.C. Gibb, in: Mössbauer Spectroscopy, Springer, Dordrecht 1971, p. 80, https://doi.org/10.1007/978-94-009-5697-1_4

M. Hasiak, M. Miglierini, J. Kaleta, J. Zbroszczyk, H. Fukunaga, Mater. Sci. 26, 167 (2008)

K. Szymański, D. Satuła, L. Dobrzyński, J. Phys. Condens. Matter 11, 881 (1999), https://doi.org/10.1088/0953-8984/11/3/026