Enhancement of Thermal and Optical Properties in ZnO-Doped POE/PCM(C25H52) Composites
Main Article Content
Abstract
This study investigates the enhancement of the thermal, structural, and optical properties of elastomeric polyolefin (POE)/phase change material (PCM(C25H52)) composite polymers through the incorporation of zinc oxide (ZnO) nanoparticles, targeting applications in thermal energy storage, photovoltaics, and encapsulation. Composites were prepared with varying ZnO doping levels (0%, 10%, and 30%) and characterized using differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The results demonstrate that the addition of ZnO nanoparticles significantly improves thermal stability, energy storage capacity, and heat transfer efficiency. The 30% ZnO-doped composite exhibited the highest melting temperature (90.5°C), no mass loss up to 180°C, and the greatest thermal conductivity, making it a promising candidate for thermal energy storage and encapsulation. X-ray diffraction analysis confirmed the successful incorporation of ZnO nanoparticles and an increase in crystallinity with doping, while photoluminescence spectra revealed enhanced optical properties due to defect passivation. The POE/PCM(C25H52) matrix provides a stable environment that preserves the intrinsic properties of ZnO nanoparticles, enabling their effective integration into the composite. These findings highlight the potential of ZnO-doped POE/PCM(C25H52) composites for advanced applications in thermal energy storage, heat management, optoelectronics, and encapsulation — particularly in photovoltaic systems, where uniform dispersion of ZnO nanoparticles can enhance light absorption, charge transport, and device durability.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. Abhat, Solar Energy 30, 313 (1983), https://doi.org/10.1016/0038-092X(83)90186-X
A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. 13, 318 (2009), https://doi.org/10.1016/j.rser.2007.10.005
S.M. Hasnain, Energy Conv. Manag. 39, 1127 (1998), https://doi.org/10.1016/S0196-8904(98)00025-9
S. Himran, A. Suwono, G.A. Mansoori, Energy Sources. 16, 117 (1994), https://doi.org/10.1080/00908319408909065
M. Hadjieva, S.T. Kanev, J. Argirov, Solar Energy Mater. Solar Cells 27, 181 (1992), https://doi.org/10.1016/0927-0248(92)90119-A
A.K. Ansu, R.K. Sharma, F.Y. Hagos, D. Tripathi, V.V. Tyagi, J. Therm. Anal. Calorime. 143, 1881 (2020), https://doi.org/10.1007/s10973-020-09976-2
K. Pielichowska, K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014), https://doi.org/10.1016/j.pmatsci.2014.03.005
C. Alkan, Thermochim. Acta 451, 126 (2006), https://doi.org/10.1016/j.tca.2006.09.010
M. Akgün, O. Aydin, K. Kaygusuz, Energy Conv. Manag. 48, 669 (2007), https://doi.org/10.1016/j.enconman.2006.05.014
J. Li, P. Xue, W. Ding, J. Han, G. Sun, Solar Energy Mater. Solar Cells 93, 1761 (2009), https://doi.org/10.1016/j.solmat.2009.06.007
C. Alkan, A. Sari, Solar Energy 82, 118 (2008), https://doi.org/10.1016/j.solener.2007.07.001
S. Harikrishnan, M. Deenadhayalan, S. Kalaiselvam, Energy Conv. Manag. 86, 864 (2014), https://doi.org/10.1016/j.enconman.2014.06.042
S. Nagar, S. Sreenivasa, Polym. Eng. Sci. 64, 4341 (2O24), https://doi.org/10.1002/pen.26852
P. Miluski, D. Dorosz, J. Zmojda, M. Kochanowicz, J. Dorosz, Acta Phys. Pol. A 127, 730 (2015), https://doi.org/10.12693/APhysPolA.127.730
J. Wang, H. Xie, Z. Guo, L. Guan, Y. Li, Appl. Therm. Eng. 73, 1541 (2014), https://doi.org/10.1016/j.applthermaleng.2014.05.078
M. Bredács, C. Barretta, L.F. Castillon, A. Frank, G. Oreski, G. Pinter, S. Gergely, Polym. Test. 99, 107406 (2021), https://doi.org/10.1016/j.polymertesting.2021.107406
M.R. Rodríguez, I. Sierra, A. Pérez Parada, L. Fornaro, Environ. Sci. Pollut. Res. 25, 16767 (2018), https://doi.org/10.1007/s11356-018-1846-0
S. Park, Y. Lee, Y.S. Kim, H.M. Lee, J.H. Kim, I.W. Cheong, W.G. Koh, Colloid. Surf. A Physicochem. Eng. Asp. 450, 46 (2014), https://doi.org/10.1016/j.colsurfa.2014.03.005
M. Lyes, K. Tahar, H. Ouided, C. Hamid, Int. J. Multiphys. 12, 147 (2018), https://doi.org/10.21152/1750-9548.12.2.147
H. Bitter, S. Lackner, Chem. Eng. J. 423, 129941 (2021), https://doi.org/10.1016/j.cej.2021.129941
X. Jiang, R. Luo, F. Peng, Y. Fang, T. Akiyama, S. Wang, Appl. Energy 137, 731 (2015), https://doi.org/10.1016/j.apenergy.2014.09.028
A. Gharssallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Food Res. Int. 40, 1109 (2007), https://doi.org/10.1016/j.foodres.2007.07.004
A. Kumar, K.M. Gangawane, in: Materials for Boosting Energy Storage. Volume 3: Advances in Sustainable Energy Technologies, American Chemical Society, 2024 ch. 13, p. 309, https://doi.org/10.1021/bk-2024-1488.ch013
M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, Energy Conv. Manag. 45, 1597 (2004), https://doi.org/10.1016/j.enconman.2003.09.015
M. Świętek, W. Tokarz, J. Tarasiuk, S. Wroński, M. Błażewicz, Acta Phys. Pol. A 125, 891 (2014), https://doi.org/10.12693/APhysPolA.125.891
S.H. Mohamed, F.M. El-Hossary, G.A. Gamal, M.M. Kahlid, Acta Phys. Pol. A 115, 704 (2009), https://doi.org/10.12693/APhysPolA.115.704
A. Budkowski, A. Bernasik, E. Moons, M. Lekka, J. Zemla, J. Jaczewska, J. Haberko, J. Raczkowska, J. Rysz, K. Awsiuk, Acta Phys. Pol. A 115, 435 (2009), https://doi.org/10.12693/APhysPolA.115.435
F. Benmammar, A. Ayadi, L. Maifi, A. Chari, K. Agroui, J. Sol-Gel Sci. Technol. 112, 870 (2024), https://doi.org/10.1007/s10971-024-06514-6
S.C. Abrahams, J.L. Bernstein, Acta Cryst. B 25, 1233 (1969), https://doi.org/10.1107/S0567740869003876
P. Scherrer, in: Kolloidchemie Ein Lehrbuch, Ed. R. Zsigmondy, P. Scherrer, Springer, Berlin 1918, p. 387 (in German), https://doi.org/10.1007/978-3-662-33915-2_7
S. Park, Y. Lee, Y.S. Kim, H.M. Lee, J.H. Kim, I.W. Cheong, W.-G. Koh, Colloid. Surf. A Physicochem. Eng. Asp. 450, 46 (2014), https://doi.org/10.1016/j.colsurfa.2014.03.005
P. Yadav, V. Lahariya, P.P. Pandey, S. Behl, R. Raghav, J. Mater. Sci. Mater. Electron. 34, 787 (2023), https://doi.org/10.1007/s10854-023-10178-3
J.-P. Richters, T. Voss, L. Wischmeier, I. Rückmann, J. Gutowski, Appl. Phys. Lett. 92, 011103 (2008), https://doi.org/10.1063/1.2829598
E. Cerrato, M.C. Paganini, E. Giamello, J. Photochem. Photobiol. A Chem. 397, 112531 (2020), https://doi.org/10.1016/j.jphotochem.2020.112531
F. Bilgin, M. Arici, Acta Phys. Pol. A 132, 1102 (2017), https://doi.org/10.12693/APhysPolA.132.1102
B. Zgardzinska, Acta Phys. Pol. A 127, 1536 (2015), https://doi.org/10.12693/APhysPolA.127.1536
S. Wu, D. Zhu, X. Zhang, J. Huang, Energy Fuels 24, 1894 (2010), https://doi.org/10.1021/ef9013967
R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Appl. Therm. Eng. 99, 1254 (2016), https://doi.org/10.1016/j.applthermaleng.2016.01.130
A. Sari, A, Karaipekli, Appl. Therm. Eng. 27, 1271 (2007), https://doi.org/10.1016/j.applthermaleng.2006.11.004
A. Sari, A. Karaipekli, C. Alkan, Chem. Eng. J. 155, 899 (2009), https://doi.org/10.1016/j.cej.2009.09.005
A. Sharma, P.K. Singh, E. Makki, J. Giri, T. Sathish, Heliyon 10, e25800 (2024), https://doi.org/10.1016/j.heliyon.2024.e25800
H. Chen, B. Yang, H. Zhang, J. Appl. Polym. Sci. 77, 928 (2000), https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<928::AID-APP29>3.0.CO;2-V
S. Wu, D. Zhu, X. Zhang, J. Huang, Energy Fuels. 24, 1894 (2003), https://doi.org/10.1021/ef9013967
W. Yu, S. Choi, J. Nanopart. Res. 5, 167 (2003), https://doi.org/10.1023/A:1024438603801
A.R. Khantoul, M. Sebais, B. Rahal, B. Boudine, O. Halimi, Acta Phys. Pol. A 133, 114 (2018), https://doi.org/10.12693/APhysPolA.133.114
Y. Chen, Q. Zhang, X. Wen, H. Yin, J. Liu, Solar Energy Mater. Solar Cells 184, 82 (2019), https://doi.org/10.1016/j.solmat.2018.04.034
T.-H. Chen, Y.-C. Yeh, Y.-C. Liao, ACS Appl. Mater. Interfaces 10, 24217 (2018), https://doi.org/10.1021/acsami.8b08310
W. Wang, D. Li, J. Wu, L. Liu, Y. Sun, W. Ma, L. Ju, X. Lu, Appl. Therm. Eng. 258, 124636 (2025), https://doi.org/10.1016/j.applthermaleng.2024.124636
K.Y. Leong, M.R. AbdulRahman, B.A. Gurunathan, J. Energy Storage 21, 18 (2019), https://doi.org/10.1016/j.est.2018.11.008
A. Gupta, R. Kumar, Appl. Phys. Lett. 91, 223102 (2007), https://doi.org/10.1063/1.2816903