Study of the Combination of Nano and Femto Second Laser Pulses to Generate Gold Plasma for Water Window Emission

Main Article Content

Z. Alyahya
W.H. Mahdi

Abstract

In this study, we employed the one-dimensional hydrodynamic simulation code MED103 to theoretically investigate the generation and spatial–temporal evolution of highly charged gold ions induced by a double-pulse Ti:sapphire laser system. A pre-pulse of 10 ns duration and intensity of 8.5 x 1011 W/cm2 and a main pulse of 100 fs duration and  intensity  of  7 x 1016 W/cm2  were  used  to irradiate a 20 µm thick gold target. The temporal separation between the pulses was varied from 0 to 10 ns to explore its effect on the formation of ion charge states ranging from Au19+ to Au34+, with particular emphasis on optimizing conditions for soft X-ray emission within the water window spectral range. Simulation results reveal that the most favorable ion fractions for ion stages (Au25+–Au30+), which are key contributors to unresolved transition arrays in the water window region,  are  predominantly  formed  at delay times between 5.8 and 7.5 ns. Additionally, both the electron temperature and average charge state were found to decrease with increasing delay time, affecting the ion distribution and emission characteristics. These results highlight the importance of precise delay time control in tailoring plasma conditions for efficient soft X-ray generation in high-Z laser-produced plasmas.

Article Details

How to Cite
[1]
Z. Alyahya and W. Mahdi, “Study of the Combination of Nano and Femto Second Laser Pulses to Generate Gold Plasma for Water Window Emission”, Acta Phys. Pol. A, vol. 149, no. 1, p. 46, Feb. 2026, doi: 10.12693/APhysPolA.149.46.
Section
Regular segment

References

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngießer, W. Sandner, Rev. Sci. Instrum. 86, 035116 (2015), https://doi.org/10.1063/1.4916193

A. Bartnik, H. Fiedorowicz, P. Wachulak, T. Fok, Ł. Węgrzyński, in: 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, Ed. P. Zemánek, SPIE, 2018, p. 109760K, https://doi.org/10.1117/12.2518202

T. Tamura, G. Arai, Y. Kondo, H. Hara, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, G. O'Sullivan, T. Higashiguchi, Opt. Lett. 43, 2042 (2018), https://doi.org/10.1364/OL.43.002042

J. Wang, M. Kishimoto, T. Johzaki, K. Mizushima, C. Kumeda, T. Higashiguchi, A. Sunahara, H. Ohiro, K. Yamasaki, S. Namba, Atoms 10, 150 (2022), https://doi.org/10.3390/atoms10040150

C. Jacobsen, Trends Cell Biol. 9, 44 (1999), https://doi.org/10.1016/S0962-8924(98)01424-X

M. Ayele, P.W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik, M. Szczurek, L. Pina, H. Fiedorowicz, Nucl. Instrum. Methods Phys. Res. B 411, 35 (2017), https://doi.org/10.1016/j.nimb.2017.03.082

J. Reinhard, S. Kaleta, J.J. Abel, F. Wiesner, M. Wünsche, E. Seemann, M. Westermann, T. Weber, J. Nathanael, A. Iliou, Microsc. Microanal. 29, 2014 (2023), https://doi.org/10.1093/micmic/ozad123

M. Kado, M. Kishimoto, S. Tamotsu, K. Yasuda, M. Aoyama, S. Tone, K. Shinohara, AIP Conf. Proc. 1696, 020019 (2016), https://doi.org/10.1063/1.4937513

T. Fok, P. Wachulak, K.A. Janulewicz, M. Duda, L. Wegrzynski, A. Bartnik, R. Jarocki, H. Fiedorowicz, Acta Phys. Pol. A 137, 51 (2020), https://doi.org/10.12693/APhysPolA.137.51

L. Schaper, S. Ackermann, E. Allaria et al., Appl. Sci. 11, 9729 (2021), https://doi.org/10.3390/app11209729

P.W. Wachulak, A. Bartnik, H. Fiedorowicz, P. Rudawski, R. Jarocki, J. Kostecki, M. Szczurek, Nucl. Instrum. Methods Phys. Res. B 268, 1692 (2010), https://doi.org/10.1016/j.nimb.2010.02.002

T. Fok, P. Wachulak, M. Wardzińska, A. Bartnik, P. Nyga, M.P. Nowak, H. Fiedorowicz, Acta Phys. Pol. A 145, 89 (2024), https://doi.org/10.12693/APhysPolA.145.89

T.-H. Dinh, Y. Suzuki, G. Arai, Appl. Phys. Lett. 107, 121101 (2015), https://doi.org/10.1063/1.4931497

L. Zhang, Y. Ding, Z. Lin et al., Nucl. Fusion 56, 036006 (2016), https://doi.org/10.1088/0029-5515/56/3/036006

C. Kaur, S. Chaurasia, N.G. Borisenko, A. Gromov, A.A. Akunets, G.V. Sklizkov, G.A. Vergunova, S. Gus'kov, Plasma Phys. Control. Fusion 61, 084001 (2019), https://doi.org/10.1088/1361-6587/ab20bd

M. Fraenkel, Y. Ehrlich, D. Rubin, Y. Ferber, G. Sturm, Rev. Sci. Instrum. 93, 073509 (2022), https://doi.org/10.1063/5.0098780

J. Davis, Y. Frank, E. Raicher, M. Fraenkel, P. Keiter, S. Klein, R. Drake, D. Shvarts, Rev. Sci. Instrum. 87, 11D609 (2016), https://doi.org/10.1063/1.4960816

Y. Yuan, Y. Ma, in: Fourth Int. Symp. on High Power Laser Science and Engineering (HPLSE 2021), SPIE, 2021, p. 1184907, https://doi.org/10.1117/12.2597560

R. Fazeli, Phys. Lett. A 381, 467 (2017), https://doi.org/10.1016/j.physleta.2016.11.024

W.-H. Hsu, F.C.P. Masim, A. Balčytis, H.-H. Huang, T. Yonezawa, A.A. Kuchmizhak, S. Juodkazis, K. Hatanaka, Beilstein J. Nanotechnol. 9, 2609 (2018), https://doi.org/10.3762/bjnano.9.242

J. Christiansen, D. Ashby, K. Roberts, Comput. Phys. Commun. 7, 271 (1974), https://doi.org/10.1016/0010-4655(74)90027-7

A. Djaoui, "A user guide for the laser-plasma simulation code: MED103", report no. RAL-TR-96-099, 1996, https://inspirehep.net/literature/427624

L. Xin, L. Ying-Jun, Z. Jie, Chinese Phys. Lett. 18, 1353 (2001), https://doi.org/10.1088/0256-307X/18/10/317

A. Cummings, G. O'Sullivan, P. Dunne, E. Sokell, N. Murphy, J. White, J. Phys. D Appl. Phys. 38, 604 (2005), https://doi.org/10.1088/0022-3727/38/4/013

G. Ghani-Moghadam, S. Rezaei, M.J. Jafari, A.H. Farahbod, Contrib. Plasma Phys. 61, e202100042 (2021), https://doi.org/10.1002/ctpp.202100042

C. John, M. Kishimoto, Y. Matsumoto, T. Morishita, T. Higashiguchi, T. Endo, A. Sunahara, T. Johzaki, S. Namba, High Energy Density Phys. 37, 100845 (2020), https://doi.org/10.1016/j.hedp.2020.100845