Stability, Electronic, Elastic, and Mechanical Properties of Graphene/TiO2 Heterostructure — Theoretical Study Using DFT

Main Article Content

W.S. Rasool
M.A. Al-Kaabi

Abstract

In this study, we conduct an in-depth exploration of the stability, mechanical, elastic, and electronic properties of a two-dimensional graphene/titanium dioxide (GR/TiO2) heterostructure using density functional theory calculations. After geometry optimization, we confirm that the individual structures are stable, with respective lattice parameters of a = b = 12.33 Å and vacuum parameter of c = 13.60 Å for graphene, a = b =11.86 AA and c=29.83 Å for TiO2, and a = b = 12.19 Å and c = 15.83 Å for GR/TiO2. This stability is further confirmed by formation energy calculations and phonon spectral analyses, which ensure the absence of imaginary modes. It is demonstrated that a strong Ti–O–C type chemical bond is established between the two components, leading to strong electronic coupling and a notable enhancement of optical response in the visible range, thus reinforcing the capabilities of TiO2 for photovoltaic and photocatalysis applications. Regarding mechanical properties, we determine Young's modulus, shear modulus, and Poisson's ratio based on elastic constants, thus confirming the mechanical stability and strength of the hybrid material under deformation. Band structure analysis reveals that the GR/TiO2 heterostructures exhibit indirect bandgap semiconductor behavior, with a reduced gap of 0.88 eV. This, in fact, is in a sharp contrast with the intrinsic gap of 2.932 eV for pure TiO2. The reduction in the energy gap is corroborated by the density of electronic state calculations, which indicate significant hybridization of states at the interfaces, favorable for efficient charge transport. These results highlight the remarkable potential of the GR/TiO2 system for next-generation electronic, optoelectronic, and photovoltaic devices, particularly in the context of optimal exploitation of the solar spectrum.

Article Details

How to Cite
[1]
W. Rasool and M. Al-Kaabi, “Stability, Electronic, Elastic, and Mechanical Properties of Graphene/TiO2 Heterostructure — Theoretical Study Using DFT”, Acta Phys. Pol. A, vol. 149, no. 1, p. 38, Feb. 2026, doi: 10.12693/APhysPolA.149.38.
Section
Regular segment

References

Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, ACS nano 6, 9777 (2012), https://doi.org/10.1021/nn304154s

M.-Q. Yang, Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, Sci. Rep. 3, 3314 (2013), https://doi.org/10.1038/srep03314

W. Wang, B. Cheng, J. Yu, G. Liu, W. Fan, Chem. Asian J. 7, 1902, 2012), https://doi.org/10.1002/asia.201200197

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001), https://doi.org/10.1126/science.1061051

H.-J. Zhai, L.-S. Wang, J. Am. Chem. Soc. 129, 3022 (2007), https://doi.org/10.1021/ja068601z

J. Chojenka, A. Zarzycki, Acta Phys. Pol. A 145, 147 (2024), https://doi.org/10.12693/APhysPolA.145.147

Y. Masuda, G. Giorgi, K. Yamashita, Phys. Status Solidi B 251, 1471 (2014), https://doi.org/10.1002/pssb.201451089

Y.-D. Zhou, Z.-Y. Zhao, Appl. Surf. Sci. 485, 8 (2019), https://doi.org/10.1016/j.apsusc.2019.04.193

A.N. Banerjee, Nanotechnol. Sci. Appl. 2011, 35 (2011), https://doi.org/10.2147/NSA.S9040

M. Sang, J. Shin, K. Kim, K.J. Yu, Nanomaterials 9, 374 (2019), https://doi.org/10.3390/nano9030374

U.P. Tyagi, P. Goswami, (2025), https://arxiv.org/abs/2506.16867

Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng, W. Li, ACS Nano 4, 6515 (2010), https://doi.org/10.1021/nn101603g

M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, S.S. Hossain, Int. Nano Lett. 6, 65 (2016), https://doi.org/10.1007/s40089-015-0176-1

S. Goenka, V. Sant, S. Sant, J. Control. Release 173, 75 (2014), https://doi.org/10.1016/j.jconrel.2013.10.017

A. Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith, J. Phys. Chem. Lett. 2, 894 (2011), https://doi.org/10.1021/jz2002698

R. Long, N.J. English, O.V. Prezhdo, J. Am. Chem. Soc. 134, 14238 (2012), https://doi.org/10.1021/ja3063953

J. Sivek, O. Leenaerts, B. Partoens, F. Peeters, (2013), https://arxiv.org/abs/1301.3654

N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, ACS Nano 7, 1504 (2013), https://doi.org/10.1021/nn305288z

R. Long, J Phys. Chem. Lett. 4, 1340 (2013), https://doi.org/10.1021/jz400589v

M. Rojas, E. Leiva, Phys. Rev. B 76, 155415 (2007), https://doi.org/10.1103/PhysRevB.76.155415

N. Allouche, B. Boudjema, R. Daira, F. Bayansal, Acta Phys. Pol. A 145, 169 (2024), https://doi.org/10.12693/APhysPolA.145.169

M. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002), https://doi.org/10.1088/0953-8984/14/11/301

A. Yahaya, W. Yahya, A. Ahmed, A. Sholagberu, Acta Phys. Pol. A 145, 194 (2024), https://doi.org/10.12693/APhysPolA.145.194

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3765 (1996), https://doi.org/10.1103/PhysRevLett.77.3865

P.E. Blöchl, Phys. Rev. B 50, 17953 (1994), https://doi.org/10.1103/PhysRevB.50.17953

S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998), https://doi.org/10.1103/PhysRevB.57.1505

M. Datteo, Ph.D. Thesis, University of Milano-Bicocca, 2020}

A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009), https://doi.org/10.1103/PhysRevLett.102.073005

Y.-X. Yuan, IMA J. Numer. Anal. 11, 325 (1991), https://doi.org/10.1093/imanum/11.3.325

H. Etea, K. Nigussa, (2023), https://arxiv.org/abs/2305.02798

F.A. Rasmussen, K.S. Thygesen, J. Phys. Chem. C 119, 13169 (2015), https://doi.org/10.1021/acs.jpcc.5b02950

R.C. Andrew, R.E. Mapasha, A.M. Ukpong, N. Chetty, Phys. Rev. B 85, 125428 (2012), https://doi.org/10.1103/PhysRevB.85.125428

V.G. Tyuterev N. Vast, Comput. Mater. Sci. 38, 350 (2006), https://doi.org/10.1016/j.commatsci.2005.08.012

C.-H. Zhou, Q. Xu, S.-T. Li, X. Zhao, J. Adv. Dielectr. 2, 1250004 (2012), https://doi.org/10.1142/S2010135X1250004X

P. Wang, C. Jia, Y. Huang, X. Duan, Matter 4, 552 (2021), https://doi.org/10.1016/j.matt.2020.12.015

G.V. Pushkarev, V.G. Mazurenko, V.V. Mazurenko, D.W. Boukhvalov, J. Phys. Chem. C 127, 8148 (2023), https://doi.org/10.1021/acs.jpcc.3c01248

W. Zhou, J. Chen, Z. Yang, J. Liu, F. Ouyang, Phys. Rev. B 99, 075160 (2019), https://doi.org/10.1103/PhysRevB.99.075160

Y. Tang, Q. Liu, J. Lei, M. Zhang, H. Yang, M. Duan, X. Ma, T. Song, Mater. Res. Express 9, 105502 (2022), https://doi.org/10.1088/2053-1591/ac9779

E. Song, Y. Zhu, Nanosci. Nanotechnol. Lett. 5, 198 (2013), https://doi.org/10.1166/nnl.2013.1523

S. Shan, W. Liu, W. Zou, R. Chen, C. Hu, Acta Phys. Pol. A 145, 157 (2024), https://doi.org/10.12693/APhysPolA.145.157

P.N. Gillespie, N. Martsinovich, ACS Appl. Mater. Interfaces 11, 31909 (2019), https://doi.org/10.1021/acsami.9b09235

W. Fu, Y. Li, M.-S. Chen, Y. Hu, B. Liu, K. Zhang, C. Zhan, M. Zhang, Z. Shen, J. Power Sources 468, 228363 (2020), https://doi.org/10.1016/j.jpowsour.2020.228363

D. Wang, D. Choi, J. Li et al., ACS Nano 3, 907 (2009), https://doi.org/10.1021/nn900150y

Y. Cen, Y. Yao, Q. Xu, Z. Xia, R.D. Sisson, J. Liang, RSC Adv. 6, 66971 (2016), https://doi.org/10.1039/C6RA08144D

S. Ding, J.S. Chen, D. Luan, F.Y.C. Boey, S. Madhavi, X.W.D. Lou, Chem. Commun. 47, 5780 (2011), https://doi.org/10.1039/c1cc10687b

S. Umrao, S. Abraham, F. Theil et al., RSC Adv. 4, 59890 (2014), https://doi.org/10.1039/C4RA10572A

H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010), https://doi.org/10.1021/nn901221k

B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, J. Zhang, Sci. Rep. 5, 8591 (2015), https://doi.org/10.1038/srep08591

X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang, K. Zhao, Z. Wang, Y. Zhao et al., Energy Environ. Mater. 5, 157 (2022), https://doi.org/10.1002/eem2.12204

L. Xu, W.-Q. Huang, L.-L. Wang, G.-F. Huang, ACS Appl. Mater. Interfaces 6, 20350 (2014), https://doi.org/10.1021/am5058772

Y.-C. Yang, L. Xu, W.-Q. Huang, C.-Y. Luo, G.-F. Huang, P. Peng, J. Phys. Chem. C 119, 19095 (2015), https://doi.org/10.1021/acs.jpcc.5b03630

X. Li, H. Gao, G. Liu, Comput. Theor. Chem. 1025, 30 (2013), https://doi.org/10.1016/j.comptc.2013.10.006

W. Xuan, N. Yang, J. Luo, R. Wang, H. Yang, G. Jin, Appl. Phys. A 129, 88 (2023), https://doi.org/10.1007/s00339-022-06354-7

B. Zhou, K. Jiang, L. Shang, J. Zhang, Y. Li, L. Zhu, S.-J. Gong, Z. Hu, J. Chuacd, J. Mater. Chem. C 8, 11160 (2020), https://doi.org/10.1039/D0TC02366C

M. Ahmed, A. Bakar, A. Quader, R.A. Ahmad, S.M. Ramay, Chem. Phys. 581, 112260 (2024), https://doi.org/10.1016/j.chemphys.2024.112260

A. Fereidoon, S. Aleaghaee, I. Taraghi, Comput. Mater. Sci. 102, 220 (2015), https://doi.org/10.1016/j.commatsci.2015.02.044

Q. Peng, K. Hu, B. Sa, J. Zhou, B. Wu, X. Hou, Z. Sun Nano Rese. 10, 3136 (2017), https://doi.org/10.1007/s12274-017-1531-5