Z-Site Substitution-Driven Transition From Semiconducting Antiferromagnetism to Half-Metallic Ferromagnetism in FeCrRuSi and FeCrRuP Heusler Alloys
Main Article Content
Abstract
We report a first-principles density functional theory study employing a modified Becke–Johnson potential of the quaternary Heusler alloys FeCrRuSi and FeCrRuP crystallizing in the Y-type (I) structure. At its equilibrium lattice parameters, FeCrRuSi is predicted to be a semiconducting antiferromagnet, exhibiting an indirect band gap of ≈ 0.69 eV in both spin channels, with the Fermi level located just above the valence-band maximum, indicative of weak n-type character. In sharp contrast, FeCrRuP displays robust half-metallic ferromagnetism, characterized by a metallic majority-spin channel and a minority-spin indirect gap of ≈ 0.72 eV, resulting in 100% spin polarization at the Fermi level. This pronounced change in electronic and magnetic behavior is attributed to a weakening of the d–p hybridization induced by the Z-site substitution. Replacing Si with P leads to a slight lattice expansion, reducing the covalent interactions between the main-group p states and the transition-metal d orbitals. Projected density-of-states analyses reveal that the minority-spin gap in FeCrRuP originates from strong hybridization between P-3p states and transition-metal d states, whereas FeCrRuSi shows a more balanced p–d contribution, consistent with antiferromagnetic order. These results demonstrate that Z-site substitution is an effective route to engineer magnetic order and half-metallicity, identifying FeCrRuP as a promising candidate for spintronic applications.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Y. Venkateswara, J. Nag, S.S. Samatham, A.K. Patel, P.D. Babu, M.R Varma, J. Nayak, K.G. Suresh, Phys. Rev. B 107, L100401 (2023), https://doi.org/10.1103/PhysRevB.107.L100401
S. Gupta, S. Chakraborty, V. Bhasin et al., Phys. Rev. B 108, 045137 (2023), https://doi.org/10.1103/PhysRevB.108.045137
C.K. Barman, C. Mondal, B. Pathak, A. Alam, Phys. Rev. B 99, 045144 (2019), https://doi.org/10.1103/PhysRevB.99.045144
V. Alijani, S. Ouardi, G.H. Fecher et al., Phys. Rev. B 84, 224416 (2011), https://doi.org/10.1103/PhysRevB.84.224416
R. Kumar, S. Gupta, Appl. Phys. Lett 124, 022402 (2024), https://doi.org/10.1063/5.0178437
N. Saidi, W. Benstaali, A. Abbad, S. Bentata, Acta Phys. Pol. A 148, 136 (2025), https://doi.org/10.12693/APhysPolA.148.136
O. Addou, A. Touia, K. Benyahia, Acta Phys. Pol. A 143, 252 (2023), https://doi.org/10.12693/APhysPolA.143.252
K. Czarnacka, P. Jaskółowska, D. Oleszak, M. Pękała, E. Jartych, Acta Phys. Pol. A 146, 227 (2024), https://doi.org/10.12693/APhysPolA.146.227
E. Raj, R. Gozdur, Ł. Bernacki, Ł. Ruta, Acta Phys. Pol. A 147, 209 (2025), https://doi.org/10.12693/APhysPolA.147.209
T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011), https://doi.org/10.1016/j.progsolidstchem.2011.02.001
S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nat. Mater. 9, 541 (2010), https://doi.org/10.1038/nmat2770
R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983), https://doi.org/10.1103/PhysRevLett.50.2024
S. Skaftouros, K. Özdoğan, E. Şaşioğlu, I. Galanakis, Phys. Rev. B 87, 024420 (2013), https://doi.org/10.1103/PhysRevB.87.024420
C. Fecher, G.H. Felser, B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007), https://doi.org/10.1002/anie.200601815
M. Meinert, J.M. Schmalhorst, G. Reiss, J. Phys. Condens. Matter 23, 116005 (2011), https://doi.org/10.1088/0953-8984/23/11/116005
I.S. Dedov, A.V. Lukoyanov, Phys. B Condens Matter 677, 415736 (2024), https://doi.org/10.1016/j.physb.2024.415736
V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011), https://doi.org/10.1103/PhysRevB.83.184428
R. Prakash, G. Kalpana, RSC Adv. 13, 10847 (2023), https://doi.org/10.1039/D3RA00942D
C.S. Lue, C.F. Chen, J.Y. Lin, Y.T. Yu, Y.K. Kuo, Phys. Rev. B 75, 064204 (2007), https://doi.org/10.1103/PhysRevB.75.064204
I. Shigeta, O. Murayama, T. Hisamatsu, A. Brinkman, A.A. Golubov, Y. Tanaka, M. Ito, H. Hilgenkamp, M. Hiroi, J. Phys. Chem. Solids 72, 604 (2011), https://doi.org/10.1016/j.jpcs.2010.10.062
L. Bainsla, A.I. Mallick, M.M. Raja, A.K. Nigam, B.S.D.C.S. Varaprasad, Y.K. Takahashi, K. Alam, K.G. Suresh, K. Hono, Phys. Rev. B 91, 104408 (2015), https://doi.org/10.1103/PhysRevB.91.104408
X. Wang, H. Khachai, R. Khenata et al. Sci. Rep. 7, 16183 (2017), https://doi.org/10.1038/s41598-017-16324-2
L.F. Feng, J.N. Ma, Y. Yang, T. Lin, L. Wang, Appl. Sci. 8, 2370 (2018), https://doi.org/10.3390/app8122370
Y. Venkateswara, S.S. Samatham, P.D. Babu, K.G. Suresh, A. Alam, Phys. Rev. B 100, 180404(R) (2019), https://doi.org/10.1103/PhysRevB.100.180404
X. Guo, Z. Ni, Z. Liang, H. Luo, Comput. Mater. Sci. 154, 442 (2018), https://doi.org/10.1016/j.commatsci.2018.08.023
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, ``WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties'', Vienna University of Technology, Vienna 2001
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997), https://doi.org/10.1103/PhysRevLett.78.1396
D. Koller, F. Tran, P. Blaha, Phys. Rev. B 85, 155109 (2012), https://doi.org/10.1103/PhysRevB.85.155109
G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006), https://doi.org/10.1016/j.cpc.2006.03.007
F. Birch, Phys. Rev 71, 809 (1947), https://doi.org/10.1103/PhysRev.71.809
J. Wang, Y. Zhou, Phys. Rev. B 69, 214111 (2004), https://doi.org/10.1103/PhysRevB.69.214111
K. Chinnadurai, B. Natesan, Comput. Mater. Sci. 188, 110116 (2021), https://doi.org/10.1016/j.commatsci.2020.110116
B. Shi, J. Li, C. Jin, J. Yang, C. Zhang, Y. Yan, Y. Wang, G. Zhang, J. Magn. Magn. Mater. 517, 167383 (2021), https://doi.org/10.1016/j.jmmm.2020.167383
R. Prakash, G. Suganya, G. Kalpana, AIP Adv. 12, 055223 (2022), https://doi.org/10.1063/5.0088553
F.N. Gharbi, I.E. Rabah, M. Rabah, H. Rached, D. Rached, N. Benkhettou, F. Boukabrine, SPIN 10, 2050002 (2020), https://doi.org/10.1142/S2010324720500022
J. Ma, L. Feng, R. Guo, Y. Liao, R. Khenata, G. Liu, L. Wang, Materials 10, 1367 (2017), https://doi.org/10.3390/ma10121367
F. Mouhat, F.-X Coudert, Phys. Rev. B 90, 224104 (2014), https://doi.org/10.1103/PhysRevB.90.224104
T. Yang, L. Hao, R. Khenata, X. Wang, Materials 11, 2091 (2018), https://doi.org/10.3390/ma11112091
I. Galanakis, P. Mavropoulos, Phys. Rev. B 67, 104417 (2003), https://doi.org/10.1103/PhysRevB.67.104417
C. Banerjee, N. Teichert, K.E. Siewierska, Z. Gercsi, G.Y.P. Atcheson, P. Stamenov, K. Rode, J.M.D. Coey, J. Besbas, Nat. Commun. 11, 468 (2020), https://doi.org/10.1038/s41467-020-18340-9
M. Ram, A. Saxena, A.E. Aly, A. Shankar, RSC Adv. 10, 7661 (2020), https://doi.org/10.1039/C9RA09303F
S. Ghosh, S. Ghosh, Phys. Status Solidi B 256, 1900039 (2019), https://doi.org/10.1002/pssb.201900039
G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, G.H. Wu, Europhys. Lett. 102, 17007 (2013), https://doi.org/10.1209/0295-5075/102/17007
R. Mahat, S. Kc, U. Karki, J.Y. Law, V. Franco, I. Galanakis, A. Gupta, P. LeClair, Phys. Rev. B 104, 014430 (2021), https://doi.org/10.1103/PhysRevB.104.014430
A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990), https://doi.org/10.1063/1.458517
A. Savin, B. Silvi, Nature 371, 683 (1994), https://doi.org/10.1038/371683a0
F. Fuster, A. Sevin, B. Silvi, J. Phys. Chem. A 104, 852 (2000), https://doi.org/10.1021/jp992783k
S. Chen, Z. Ren, Mater. Today 16, 387 (2013), https://doi.org/10.1016/j.mattod.2013.09.015
Y. Nishino, S. Deguchi, U. Mizutani, Phys. Rev. B 74, 115115 (2006), https://doi.org/10.1103/PhysRevB.74.115115
S. Mitra, A. Ahmad, S. Chakrabarti, S. Biswas, A. Kumar Das, Phys. B Condens. Matter 640, 413878 (2022), https://doi.org/10.1016/j.physb.2022.413878
B. Shi, J. Li, C. Jin, J. Yang, C. Zhang, Y. Yan, Y. Wang, G. Zhang, J. Magn. Magn. Mater. 517, 167383 (2021), https://doi.org/10.1016/j.jmmm.2020.167383
R. Prakash, G. Suganya, G. Kalpana, AIP Adv. 12, 055223 (2022), https://doi.org/10.1063/5.0088553
I. Serhiienko, M. Parzer, F. Garmroudi, A. Novitskii, N. Tsujii, E. Bauer, Y. Grin, T. Mori, J. Mater. Chem. A 13, 15268 (2025), https://doi.org/10.1039/D5TA01437A
A. Hzzazi, H. Alqurashi, E. Andharia, B. Hamad, M.O. Manasreh, Crystals 14, 33 (2024), https://doi.org/10.3390/cryst14010033