Qubit Thermalization by Random Pulses: Asymptotic State Factorization
Main Article Content
Abstract
Here we consider an analytically tractable model of a two-level quantum system subject to random shocks and prove that it decays asymptotically to a trivial state, that is, to a state in which the two levels have equal probability of being occupied. In a two-qubit system, if the shocks affect each qubit independently, the equilibrium density matrix becomes a simple product of the one-qubit equilibrium density matrix, regardless of the form of the initial state. This has potential applications to entangled qubits in quantum computers.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R.F. Werner, Phys. Rev. A 40, 4277 (1989), https://doi.org/10.1103/physreva.40.4277
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 867 (2009), https://doi.org/10.1103/RevModPhys.81.865
M.J. Clauser, M. Blume, Phys. Rev. B 3, 583 (1971), https://doi.org/10.1103/PhysRevB.3.583
H. Gzyl, J. Stat. Phys. 191, 67 (2024), https://doi.org/10.1007/s10955-024-03284-x
W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed., John Wiley & Sons, New York 1971
M.A. Pinsky, Lectures on Random Evolution, World Scientific Publishers, River Edge (NJ) 1991, https://doi.org/10.1142/1328
N. Van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam 1981
B.H. Lavenda, Statistical Physics: A Probabilistic Approach, Dover Publications, Mineola (NY) 1991
B.M. Terhal, M.M. Wolf, A.C. Doherty, Phys. Today 56, 46 (2003), https://doi.org/10.1063/1.1580049
M. Żukowski, Acta Phys. Pol. A 101, 21 (2002), https://doi.org/10.12693/APhysPolA.101.21
P. Busz, P. Rożek, D. Tomaszewski, J. Martinek, Acta Phys. Pol. A 127, 490 (2015), https://doi.org/10.12693/APhysPolA.127.490
M.F. Santos, P. Milman, L. Davidovich, N. Zagury, Phys. Rev. A 73, 040305-1 (2006), https://doi.org/10.1103/PhysRevA.73.040305
J.-H. An, S.-J. Wang, H.-G. Luo, Physica A 382, 753 (2007), https://doi.org/10.1016/j.physa.2007.04.008
C.Y. Koha, L.C. Kweka, Physica A 403, 54 (2014), https://doi.org/10.1016/j.physa.2014.02.017
C.-P. Yang, G.C. Guo, Phys. Rev. A 59, 4217 (1999), https://doi.org/10.1103/PhysRevA.59.4217
K. Roszak, P. Machnikowski, L. Jacak, Acta Phys. Pol. A 110, 331 (2006), https://doi.org/10.12693/APhysPolA.110.331
P. Li, Q. Zhang, J.Q. You, Phys. Rev. A 79, 014303 (2009), https://doi.org/10.1103/PhysRevA.79.014303
R.J. Lewis-Swan, A. Safavi-Naini, A.M. Kaufman, Q.M. Rey, Nat. Rev. Phys. 1, 627 (2019), https://doi.org/10.1038/s42254-019-0090-y
J. Dajka, Int. J. Theor. Phys. 53, 870 (2014), https://doi.org/10.1007/s10773-013-1876-9
A. Buchleitner, A. Carvalho, F. Mintert, Acta Phys. Pol. A 112, 575 (2007), https://doi.org/10.12693/APhysPolA.112.575
Z. An, C. Cao, C.-Q. Xu, D.L. Zhou, Quantum 8, 1421 (2024), https://doi.org/10.22331/q-2024-07-22-1421
S. Ghosh, S. Bandyopadhyay, A. Roy, D. Sarkar, G. Kar, Phys. Rev. A 61, 052301 (2000), https://doi.org/10.1103/PhysRevA.61.052301
V. Bužek, M. Hillery, Phys. Rev. A 65, 052303 (2000), https://doi.org/10.1103/PhysRevA.62.052303
C.-Z. Zhang, J.-M. Du, H.-Y. Fan, Mod. Phys. Lett. A 35, 2050211 (2020), https://doi.org/10.1142/S0217732320502119
J. Wu, J.Q. Hutasoit, D. Boyanovsky, R. Holman, Phys. Rev. A 82, 013006 (2010), https://doi.org/10.1103/PhysRevD.82.013006
P. Sancho, Phys. Rev. A 95, 032116 (2017), https://doi.org/10.1103/PhysRevA.95.032116
M. Ikram, F.-L. Li, M.S. Zubairy, Phys. Rev. A 75, 062336 (2007), https://doi.org/10.1103/PhysRevA.75.062336
X. Cao, H. Zheng, Phys. Rev. A 77, 022320 (2008), https://doi.org/10.1103/PhysRevA.77.022320
M. Qurban, R. Tahira, R. Ul-Islam, M. Ikram, Opt. Commun. 366, 285 (2016), https://doi.org/10.1016/j.optcom.2016.01.055
X.S. Ma, A.M. Wang, Physica A 388, 82 (2009), https://doi.org/10.1016/j.physa.2008.09.031
A.-B.A. Mohamed, H.A. Hessian, A.-S.F. Obadab, Physica A 390, 519 (2011), https://doi.org/10.1016/j.physa.2010.08.027
L. Aolita, F. de Melo, L. Davidovich, Rep. Prog. Phys. 78, 042001 (2014), https://doi.org/10.1088/0034-4885/78/4/042001
A.G. de Oliveira, R.H. Gomes, V.C.C. Brasil, R. da Silva, L.C. Céleri, P.H.S. Ribeiro, Phys. Lett. A 384, 126933 (2020), https://doi.org/10.1016/j.physleta.2020.126933
J.P. Cherian, S. Chakraborty, S. Ghosh, Europhys. Lett. 126, 40003 (2019), https://doi.org/10.1209/0295-5075/126/40003
M. Merkli, I.M. Sigal, G.P. Berman, Phys. Rev. Lett. 98, 130401 (2007), https://doi.org/10.1103/PhysRevLett.98.130401
S.L. Jacob, M. Esposito, J.M.R. Parrondo, F. Barra, PRX Quantum 2, 020312 (2001), https://doi.org/10.1103/PRXQuantum.2.020312
F. Chen, Z.-H. Sun, M. Gong et al., Phys. Rev. Lett. 127, 020602 (2021), https://doi.org/10.1103/PhysRevLett.127.020602
Q. Zhu, Z.-H. Sun, M. Gong et al., Phys. Rev. Lett. 128, 160502 (2022), https://doi.org/10.1103/PhysRevLett.128.160502
M. Hernandez, M. Orzag, Phys. Rev. 78, 042114 (2008), https://doi.org/10.1103/PhysRevA.78.042114
T. Yu, J. Eberly, Quantum Inf. Comput. 7, 459 (2007)
K. Ann, G. Jaeger, Phys. Rev. B 75, 115307 (2007), https://doi.org/10.1103/PhysRevB.75.115307
A.V. Zampetaki, F.K. Diakonos, Phys. Rev. Lett. 109, 090402 (2012), https://doi.org/10.1103/PhysRevLett.109.090402
N. Wu, A. Nanduri, H. Rabitz, Phys. Rev. A 89, 062105 (2014), https://doi.org/10.1103/PhysRevA.89.062105
P.J. Dodd, J.J. Halliwell, Phys. Rev. A 69, 052105 (2004), https://doi.org/10.1103/PhysRevA.69.052105
S. Ghosh, K. Gar, A. Roy, D. Sarkar, U. Sen, Phys. Rev. A 64, 042114 (2001), https://doi.org/10.1103/PhysRevA.64.042114
B. Yoshida, N.Y. Yao, Phys. Rev. X 9, 011006 (2019), https://doi.org/10.1103/PhysRevX.9.011006
J.-Q. Li, J.-Q. Liang, Phys. Lett. A 174, 1975 (2010), https://doi.org/10.1016/j.physleta.2010.03.004
Y. Deville, A. Deville, Digit. Signal Process. 67, 30 (2017), https://doi.org/10.1016/j.dsp.2017.04.013