EXKALIBUR: Towards a Kaonic Atoms Periodic Table to Test Fundamental Interactions

Main Article Content

S. Manti
A. Khreptak
J. Marton
P. Moskal
H. Ohnishi
K. Pischicchia
F. Principato
A. Scordo
F. Sgaramella
M. Silarski
D. Sirgh
F. Sirghi
M. Skurzok
A. Spallone
K. Toho
L. Toscano
O. Vazquez Doce
M. Iwasaki
P. Indelicato
M. Iliescu
L. Abbene
F. Artibani
M. Bazzi
G. Borghi
D. Bosnar
M. Bragadireanu
A. Buttacavoli
M. Carminati
F. Clozza
A. Clozza
L. De Paolis
R. Del Grande
K. Dulski
L. Fabbietti
C. Fiorini
I. Friščić
C. Curceanu

Abstract

Kaonic atoms, formed when a negatively charged kaon replaces an electron, provide a unique laboratory to test fundamental interactions at low energies. EXKALIBUR (EXtensive Kaonic Atoms research: from LIthium and Beryllium to URanium) is a program to perform systematic, high-precision X-ray spectroscopy of selected kaonic atoms across the periodic table at the DAФNE accelerator at the National Laboratory of Frascati. Here, we outline its detector-driven strategy: silicon drift detectors for 10–40 keV transitions in light targets (Li, Be, B, O), CdZnTe detectors for 40–300 keV lines in intermediate-Z systems (Mg, Al, Si, S), and a high-purity germanium detector for high-Z atoms (Se, Zr, Ta, Mo, W, Pb), complemented by VOXES, a high-resolution crystal spectrometer for sub eV studies. EXKALIBUR plans to (i) reduce the charged-kaon mass uncertainty below 10 keV, (ii) produce a database of nuclear shifts and widths to constrain multi-nucleon K--nucleus interactions models, and (iii) provide precision data for testing bound-state quantum electrodynamics in strong fields. We summarize the planned measurements and expected sensitivities within DAФNE luminosities.

Article Details

How to Cite
[1]
S. Manti, “EXKALIBUR: Towards a Kaonic Atoms Periodic Table to Test Fundamental Interactions”, Acta Phys. Pol. A, vol. 148, no. 6, p. S89, Dec. 2025, doi: 10.12693/APhysPolA.148.S89.
Section
Special segment

References

C. Curceanu, L. Abbene, C. Amsler et al., Front. Phys. 11, 1240250 (2023), https://doi.org/10.3389/fphy.2023.1240250

L.M. Simons, D. Horváth, G. Torelli, Electromagnetic Cascade and Chemistry of Exotic Atoms, Springer US, Boston (MA) 1990, https://doi.org/10.1007/978-1-4899-3701-8

G.R. Burbidge, A.H. de Borde, Phys. Rev. 89, 189 (1953), https://doi.org/10.1103/PhysRev.89.189

C. Curceanu, C. Guaraldo, M. Iliescu et al., Rev. Mod. Phys. 91, 025006 (2019), https://doi.org/10.1103/RevModPhys.91.025006

H. Liu, B. Ohayon, O. Shtaif, Y. Soreq, Phys. Rev. Lett. 135, 131803 (2025), https://doi.org/10.1103/ndfg-42w7

SIDDHARTA Collaboration, M. Bazzi, G. Beer, L. Bombelli et al., Phys. Lett. B 704, 113 (2011), https://doi.org/10.1016/j.physletb.2011.09.011

F. Sirghi, M. Iliescu, L. Abbene et al., J. Instrum. 19, P11006 (2024), https://doi.org/10.1088/1748-0221/19/11/P11006

C. Milardi, D. Alesini, S. Bini, et al., in: Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver (BC), 2018, p. 334, https://doi.org/10.18429/JACoW-IPAC2018-MOPMF088

C. Milardi, D. Alesini, O.R. Blanco-García et al., in: Proc. 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas (SP) Brazil, 2021, p. 1322, https://doi.org/10.18429/JACoW-IPAC2021-TUPAB001

SIDDHARTA Collaboration, M. Bazzi, G. Beer, L. Bombelli et al., Phys. Lett. B 681, 310 (2009), https://doi.org/10.1016/j.physletb.2009.10.052

A. Milardi, A. Gallo, A. Stecchi et al., in: Proc. 15th Int. Particle Accelerator Conf. (IPAC'24), 2024, p. 2504, https://doi.org/10.18429/JACoW-IPAC2024-WEPR17

C. Curceanu, A. Amirkhani, A. Baniahmad et al., Acta Phys. Pol. B 51, 251 (2020), https://doi.org/10.5506/APhysPolB.51.251

P. Indelicato, P.J. Mohr, in: Handbook of Relativistic Quantum Chemistry, Ed. W. Liu, Springer, Berlin 2016), p. 1, https://doi.org/10.1007/978-3-642-41611-8_36-1

F. Sgaramella, D. Sirghi, K. Toho et al., Phys. Lett. B 865, 139492 (2025), https://doi.org/10.1016/j.physletb.2025.139492

S. Manti, F. Napolitano, A. Clozza, F. Napolitano, G. Moskal, K. Piscicchia, D. Sirghi, A. Scordo, Condens. Matter 9, 19 (2024), https://doi.org/10.3390/condmat9010019

J. Morgner, B. Tu, C.M. König et al., Nature 622, 53 (2023), https://doi.org/10.1038/s41586-023-06453-2

V.M. Shabaev, A.I. Bondarev, D.A. Glazov et al., Hyperfine Interact. 239, 60 (2018), https://doi.org/10.1007/s10751-018-1537-8

N. Paul, G. Bian, T. Azuma, S. Okada, P. Indelicato, Phys. Rev. Lett. 126, 173001 (2021), https://doi.org/10.1103/PhysRevLett.126.173001

T. Okumura, T. Azuma, D.A. Bennett et al., Phys. Rev. Let. 134, 243001 (2025), https://doi.org/10.1103/PhysRevLett.134.243001

G. Baptista, S. Rathi, M. Roosa et al., Proc. Sci. 480, 085 (2025), https://doi.org/10.22323/1.480.0085

M. Miliucci, A. Scordo, D. Sirghi et al., Meas. Sci. Technol. 32, 095501 (2021), https://doi.org/10.1088/1361-6501/abeea9

A. Khreptak, M. Skurzok, Bio-Algorithms MedSyst. 19, 74 (2023), https://doi.org/10.5604/01.3001.0054.1936

A. Scordo, L. Abbene, F. Artibani et al., Nucl. Instrum. Methods Phys. Res. A 1060, 169060 (2024), https://doi.org/10.1016/j.nima.2023.169060

D. Bosnar, L. Abbene, C. Amsler et al., Nucl. Instrum. Methods Phys. Res. A 1069, 169966 (2024), https://doi.org/10.1016/j.nima.2024.169966

A. Scordo, L. Breschi, C. Curceanu, M. Miliucci, F. Sirghiad, J. Zmeskale, J. Anal. Atom. Spectrom. 35, 155 (2020), https://doi.org/10.1039/C9JA00269C

L. Toscano, G. Deda, G. Borghi et al., J. Instrum. 19, P07039 (2024), https://doi.org/10.1088/1748-0221/19/07/P07039

J.P. Santos, F. Parente, S. Boucard, P. Indelicato, J.P. Desclaux, Phys. Rev. A 71, 032501 (2005), https://doi.org/10.1103/PhysRevA.71.032501

J.V. Mallow, J.P. Desclaux, A.J. Freeman, Phys. Rev. A 17, 1804 (1978), https://doi.org/10.1103/PhysRevA.17.1804

S. Manti, F. Sgaramella, L. Abbene et al., (2025), https://arxiv.org/abs/2508.08161

V.R. Akylas, P. Vogel, Comput. Phys. Commun. 15, 291 (1978), https://doi.org/10.1016/0010-4655(78)90099-1

A. Denisov A.V. Zhelamkow, Y.M. Ivanov et al., JETP Lett 54, 558 (1991)

K.P. Gall, E. Austin, J.P. Miller, et al., Phys. Rev. Lett. 60, 186 (1988), https://doi.org/10.1103/PhysRevLett.60.186

S. Navas, C. Amsler, T. Gutsche et al., Phys. Rev. D 110, 030001 (2024), https://doi.org/10.1103/PhysRevD.110.030001

J. Óbertová, E. Friedman, J. Mareš, Phys. Rev. C 106, 065201 (2022), https://doi.org/10.1103/PhysRevC.106.065201

J. Óbertová, Á. Ramos, J. Mareš, (2025), https://arxiv.org/abs/2508.07921

C.J. Batty, S.F. Biagi, M. Blecher et al., Nucl. Phys. A 329, 407 (1979), https://doi.org/10.1016/0375-9474(79)90384-1

E. Friedman, A. Gal, C.J. Batty, Nucl. Phys. A 579, 518 (1994), https://doi.org/10.1016/0375-9474(94)90921-0

L. De Paolis, M Bazzi, D. Bosnar et al., J. Phys. Conf. Ser. 2446, 012038 (2023), https://doi.org/10.1088/1742-6596/2446/1/012038

J. Schwinger, Physical Review 82, 664 (1951), https://doi.org/10.1103/PhysRev.82.664

T. Ishiwatari, G. Beer, A.M. Bragadireanu et al., Phys. Lett. B 593, 48 (2004), https://doi.org/10.1016/j.physletb.2004.04.055

T. Koike, in: 2nd Int. Conf. on Exotic Atoms and Related Topics, 2005, p. 215