G4RT — Geant4-Based Simulation Platform for Radiotherapy Phantom Studies

Main Article Content

J. Hajduga
J. Moroń
B. Mindur
B. Łach
D. Kulig
M. Kopeć
S. Koperny
K. Kalecińska
D. Kabat
T. Fiutowski
T. Szumlak
B. Rachwał
R. Naina
P. Wiącek

Abstract

We introduce G4RT, a reproducible simulation framework that transforms complete computer-aided design assemblies into Geant4-compatible detector geometries via a fully auditable computer-aided design-to-database (CAD → DB) workflow. Exports from the Fusion 360 CAD platform (3MF and CSV) are normalized into a schema-constrained database and processed by a database-driven geometry builder, which preserves hierarchical structure, material definitions, and spatial transformations while generating tessellated solids and registering sensitive detector volumes. Physics settings, cut-offs, sources (analytic or International Atomic Energy Agency phase-space files), and scoring parameters are centrally configured using TOML, a human-readable configuration file format. We assess geometry fidelity, dosimetric accuracy via gamma analysis, and computational performance under multithreading, demonstrating reduced iteration times and enhanced auditability compared to hand-coded geometries. This approach is particularly suited for experiments employing 3D-printed scintillator phantoms under clinically realistic beam conditions.

Article Details

How to Cite
[1]
J. Hajduga, “G4RT — Geant4-Based Simulation Platform for Radiotherapy Phantom Studies”, Acta Phys. Pol. A, vol. 148, no. 6, p. S85, Jan. 2026, doi: 10.12693/APhysPolA.148.S85.
Section
Special segment

References

J. Allison, K. Amako, J. Apostolakis et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016), https://doi.org/10.1016/j.nima.2016.06.125

International Atomic Energy Agency, Phase-space Database for External Beam Radiotherapy, 2024

R. Capote, R. Jeraj, C.M. Ma, D.W.O. Rogers, F. Sanchez-Doblado, J. Sempau, J. Seuntjens, J.V. Siebers, in: Consultants' Meeting on Phase-space Database for External Beam Radiotherapy, INDC(NDS)-0484, 2006

T. Preston-Werner, P. Gedam, D. Ostroske et al., TOML v1.0.0. 2021

C.M. Poole, I. Cornelius, J.V. Trapp, C.M. Langton, Australas. Phys. Eng. Sci. Med. 35, 329 (2012), https://doi.org/10.1007/s13246-012-0159-8

C.M. Poole, I. Cornelius, J.V. Trapp, C.M. Langton, IEEE Trans. Nucl. Sci. 59, 1695 (2012), https://doi.org/10.1109/TNS.2012.2197415

R. Chytracek, J. Mccormick, W. Pokorski, G. Santin, IEEE Trans. Nucl. Sci. 53, 2892 (2006), https://doi.org/10.1109/TNS.2006.881062

D.A. Low, W.B. Harms, S. Mutic, J.A. Purdy, Med. Phys. 25, 656 (1998), https://doi.org/10.1118/1.598248

D.A. Low, J.F. Dempsey, Med. Phys. 30, 2455 (2003), https://doi.org/10.1118/1.1598711