The µPPET Project: Application of J-PET for Cosmic Rays Investigation

Main Article Content

A. Porcelli

Abstract

The µPPET project aims to study the cause of the observed excess of muons on the ground in extensive air showers — the so-called muon puzzle. In particular, it tests specific hypotheses that might lead to the solution of this 15-year-long-standing puzzle. The project repurposes two J-PET scanners developed by the Jagiellonian University as a muon tracker and an air-shower detection array. To make the first measurements in summer 2026, Monte Carlo simulations were used to understand the muon calibration in the muon tracker and possible array configurations. Progress achieved on these two crucial steps is presented in this work. 

Article Details

How to Cite
[1]
A. Porcelli, “The µPPET Project: Application of J-PET for Cosmic Rays Investigation”, Acta Phys. Pol. A, vol. 148, no. 6, p. S80, Dec. 2025, doi: 10.12693/APhysPolA.148.S80.
Section
Special segment

References

J. Matthews, Astropart. Phys. 22, 387 (2005), https://doi.org/10.1016/j.astropartphys.2004.09.003

L.G. Dedenko, A.V. Lukyashin, T.M. Roganova G.F. Fedorova, J. Phys. Conf. Ser. 934, 012017 (2017), https://doi.org/10.1088/1742-6596/934/1/012017

T. Pierog, Proc. Sci. 301, 1100 (2018), https://doi.org/10.22323/1.301.1100

F. Riehn, R. Engel, A. Fedynitch, T.K. Gaisser, T. Stanev, Phys. Rev. D 102, 063002 (2020), https://doi.org/10.1103/PhysRevD.102.063002

J. Albrecht, L. Cazon, H. Dembinski et al., Astrophys. Space Sci. 367, 27 (2022), https://doi.org/10.1007/s10509-022-04054-5

S. Baur, H. Dembinski, M. Perlin, T. Pierog, R. Ulrich, K. Werner, Phys. Rev. D 107, 094031 (2023), https://doi.org/10.1103/PhysRevD.107.094031

S. Acharya, A. Agarwal, G. Aglieri Rinella et al., J. Cosmol. Astropart. Phys. 2025, 009 (2025), https://doi.org/10.1088/1475-7516/2025/04/009

L.A. Anchordoqui, C. García Canal, F. Kling, S.J. Sciutto, J.F. Soriano, J. High Energy Astrophys. 34, 19 (2022), https://doi.org/10.1016/j.jheap.2022.03.004

A. Airapetian, N. Akopov, Z. Akopov et al., Phys. Rev. Lett. 103, 152002 (2009), https://doi.org/10.1103/PhysRevLett.103.152002

B. Parsamyan, Proc. Sci. 249, 007 (2015), https://doi.org/10.22323/1.249.0007

A. Porcelli, K.V. Eliyan, G. Moskal et al., Universe 11, 180 (2025), https://doi.org/10.3390/universe11060180

S. Niedźwiecki, P. Białas, C. Curceanu et al., Acta Phys. Pol. B 48, 1567 (2017), https://doi.org/10.5506/APhysPolB.48.1567

F.T. Ardebili, S. Niedźwiecki, P. Moskal, Bio-Algorithms Med-Syst. 19, 132 (2023), https://doi.org/10.5604/01.3001.0054.1973

F.T. Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 1 (2024), https://doi.org/10.5604/01.3001.0054.8095

P. Moskal, Sz. Niedźwiecki, T. Bednarski et al., Nucl. Instrum. Methods Phys. Res. A 764, 317 (2014), https://doi.org/10.1016/j.nima.2014.07.052

P. Moskal, P.0 Kowalski, R.Y. Shopa et al., Phys. Med. Biol. 66, 175015 (2021), https://doi.org/10.1088/1361-6560/ac16bd

P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273

P. Moskal, E. Czerwiński, J. Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6

P. Moskal, A. Gajos, M. Mohammed et al., Nat. Commun. 12, 5658 (2021), https://doi.org/10.1038/s41467-021-25905-9

P. Moskal, D. Kumar, S. Sharma, Sci. Adv. 11, 3046 (2025), https://doi.org/10.1126/sciadv.ads3046

P. Moskal, K. Dulski, N. Chug et al., Sci. Adv. 7, 4394 (2021), https://doi.org/10.1126/sciadv.abh4394

P. Moskal, J. Baran, S. Bass, Sci. Adv. 10, 2840 (2024), https://doi.org/10.1126/sciadv.adp2840

M. Das, R. Bayerlein, S. Sharma et al., Bio-Algorithms Med-Syst. 20, 101 (2024), https://doi.org/10.5604/01.3001.0054.9362

G. Korcyl, P. Białas, C. Curceanu et al., IEEE Trans. Medical Imaging 37, 2526 (2018), https://doi.org/10.1109/TMI.2018.2837741

L. Raczyński, W. Wiślicki, K. Klimaszewski et al., Phys. Med. 80, 230 (2020), https://doi.org/10.1016/j.ejmp.2020.10.011