Universal Frequency Correlations and Recurrence Statistics of Complex Impedance Matrices
Main Article Content
Abstract
Linear electromagnetic wave scattering systems can be characterized by an impedance matrix that relates the voltages and currents at the ports of the system. When the system size becomes greater than the wavelength of the fields involved, the impedance matrix becomes a complicated function of the details of the system, in which case a statistical model, such as the random coupling model, becomes useful. The statistics of the elements of the random coupling model impedance matrix depend on the excitation frequency, the spectral density of the modes of the enclosed system volume, the average loss factor (Q-1) of the system, and the properties of the coupling ports as given by their radiation impedances. In this paper, properties of the elements of impedance matrices are explored numerically and experimentally. These include the two-point frequency correlation functions for the complex impedance of elements and the expected difference in frequencies between which impedance values are approximately repeated. Universal scaling arguments are then given for these quantities; hence, these results are generic for all sufficiently complicated scattering systems, including acoustic and optical systems. The experimental data presented in this paper come from microwave graphs, billiards, and three-dimensional cavities with embedded tunable perturbers such as metasurfaces. The data is found to be in generally good agreement with the predictions for the two-point frequency correlations and the frequency interval for successive repetitions of impedance matrix element values.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947), https://doi.org/10.1103/PhysRev.72.29
R.H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, MIT press, 1975
L. Couchman, E. Ott, T.M. Antonsen, Phys. Rev. A 46, 6193 (1992), https://doi.org/10.1103/PhysRevA.46.6193
C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997), https://doi.org/10.1103/RevModPhys.69.731
T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998), https://doi.org/10.1016/S0370-1573(97)00088-4
T. Guhr, H.A Weidenmüller, Ann. Phys. 193, 472 (1989), https://doi.org/10.1016/0003-4916(89)90006-7
Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000), https://doi.org/10.1103/RevModPhys.72.895
RA Méndez-Sánchez, U. Kuhl, M. Barth, C.H. Lewenkopf, H.-J. Stöckmann, Phys. Rev. Lett. 91, 174102 (2003), https://doi.org/10.1103/PhysRevLett.91.174102
Y.V. Fyodorov, D.V. Savin, J. Exp. Theor. Phys. Lett. 80, 725 (2004), https://doi.org/10.1134/1.1868794
U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005), https://doi.org/10.1103/PhysRevLett.94.144101
H.A. Weidenmüller, G.E. Mitchell, Rev. Mod. Phys. 81, 539 (2009), https://doi.org/10.1103/RevModPhys.81.539
G.E. Mitchell, A. Richter, H.A. Weidenmüller, Rev. Mod. Phys. 82, 2845 (2010), https://doi.org/10.1103/RevModPhys.82.2845
R.S. Langley, IEEE Trans. Electromagn. Compat. 52, 1041 (2010), https://doi.org/10.1109/TEMC.2010.2068051
M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. 2011, 014014 (2011), https://doi.org/10.1088/0031-8949/2011/T143/014014
D.N. Maksimov, G. Tanner, J. Acoust. Soc. Am. 130, 1337 (2011), https://doi.org/10.1121/1.3621321
U. Kuhl, Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150158 (2016), https://doi.org/10.1098/rsta.2015.0158
H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz, T. Kottos, Phys. Rev. Lett. 118, 044101 (2017), https://doi.org/10.1103/PhysRevLett.118.044101
A. Grabsch, D.V. Savin, C. Texier, J. Phys. A Math. Theor. 51, 404001 (2018), https://doi.org/10.1088/1751-8121/aada43
P. del Hougne, D.V. Savin, O. Legrand, U. Kuhl, Phys. Rev. E 102, 010201 (2020), https://doi.org/10.1103/PhysRevE.102.010201
T.M. Antonsen, X. Zheng, E. Ott, Electromagnetics 26, 3 (2006), https://doi.org/10.1080/02726340500214894
T.M. Antonsen, X. Zheng, E. Ott, Electromagnetics 26, 37 (2006), https://doi.org/10.1080/02726340500214902
J.A. Hart, T.M. Antonsen, E. Ott, Phys. Rev. E 80, 041109 (2009), https://doi.org/10.1103/PhysRevE.80.041109
J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 82, 041114 (2010), https://doi.org/10.1103/PhysRevE.82.041114
M.-J. Lee, T.M. Antonsen, E. Ott, Phys. Rev. E 87, 062906 (2013), https://doi.org/10.1103/PhysRevE.87.062906
S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005), https://doi.org/10.1103/PhysRevLett.94.014102
J. Gil Gil, Z.B. Drikas, T.D. Andreadis, S.M. Anlage, IEEE Trans. Electromagn. Compat. 58, 1535 (2016), https://doi.org/10.1109/TEMC.2016.2580301
S. Ma, T.M. Antonsen, S.M. Anlage, Phys. Rev. Appl. 19, 064052 (2023), https://doi.org/10.1103/PhysRevApplied.19.064052
Y. Aurégan, V. Pagneux, Acta Acust. united Acust. 102, 869 (2016), https://doi.org/10.3813/AAA.919001
S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 71, 056215 (2005), https://doi.org/10.1103/PhysRevE.71.056215
J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 81, 025201 (2010), https://doi.org/10.1103/PhysRevE.81.025201
M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Rev. E 81, 046204 (2010), https://doi.org/10.1103/PhysRevE.81.046204
M. Ławniczak, L. Sirko, Sci. Rep. 9, 5630 (2019), https://doi.org/10.1038/s41598-019-42123-y
S. Hemmady, X. Zheng, J. Hart, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 74, 036213 (2006), https://doi.org/10.1103/PhysRevE.74.036213
S. Hemmady, J. Hart, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. B 74, 195326 (2006), https://doi.org/10.1103/PhysRevB.74.195326
J.-H. Yeh, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 85, 015202 (2012), https://doi.org/10.1103/PhysRevE.85.015202
L. Chen, S.M. Anlage, Y.V. Fyodorov, Phys. Rev. Lett. 127, 204101 (2021), https://doi.org/10.1103/PhysRevLett.127.204101
N. Shaibe, J.M. Erb, S.M. Anlage, Phys. Rev. Lett. 134, 147203 (2025), https://doi.org/10.1103/PhysRevLett.134.147203
N. Shaibe, J.M. Erb, S.M. Anlage, Phys. Rev. Res. 7, 043185 (2025), https://doi.org/10.1103/l46w-xv5k
J. Wiersig, Phys. Rev. Lett. 112, 203901 (2014), https://doi.org/10.1103/PhysRevLett.112.203901
Z. Xiao, H. Li, T. Kottos, A. Alú, Phys. Rev. Lett. 123, 213901 (2019), https://doi.org/10.1103/PhysRevLett.123.213901
J. Chen, W. Liu, J. Wang, C. Li, R.-Y. Zhang, X. Cui, F. Guan, L. Shi, J. Zi, C.T. Chan, ACS Photonics 12, 3208 (2025), https://doi.org/10.1021/acsphotonics.5c00575
J. Erb, N. Shaibe, R. Calvo, D.P. Lathrop, T.M. Antonsen Jr., T. Kottos, S.M. Anlage, Phys. Rev. Res. 7, 023090 (2025), https://doi.org/10.1103/PhysRevResearch.7.023090
Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, J. Phys. A Math. Gen. 38, 10731 (2005), https://doi.org/10.1088/0305-4470/38/49/017
D.V. Savin, Y.V. Fyodorov, H.-J. Sommers, Acta Phys. Pol. A 109, 53 (2006), https://doi.org/10.12693/APhysPolA.109.53
B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, J. Verbaarschot, H.A. Weidenmüller, Phys. Rev. Lett. 103, 064101 (2009), https://doi.org/10.1103/PhysRevLett.103.064101
B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, H.A. Weidenmüller, Phys. Rev. E 81, 036205 (2010), https://doi.org/10.1103/PhysRevE.81.036205
M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. 2012, 014018 (2012), https://doi.org/10.1088/0031-8949/2012/T147/014018
J.-H. Yeh, Z. Drikas, J. Gil Gil, S. Hong, B. Taddese, E. Ott, T. Antonsen, T. Andreadis, S. Anlage, Acta Phys. Pol. A 124, 1045 (2013), https://doi.org/10.12693/APhysPolA.124.1045
M. Ławniczak, M. Bialous, V. Yunko, S. Bauch, L. Sirko, Phys. Rev. E 91, 032925 (2015), https://doi.org/10.1103/PhysRevE.91.032925
V.V. Sokolov, O.V. Zhirov, Acta Phys. Pol. A 128, 990 (2015), https://doi.org/10.12693/APhysPolA.128.990
T.E.O. Ericson, B. Dietz, A. Richter, Phys. Rev. E 94, 042207 (2016), https://doi.org/10.1103/PhysRevE.94.042207
J.G.G.S. Ramos, A.L.R. Barbosa, B.V. Carlson, T. Frederico, M.S. Hussein, Phys. Rev. E 93, 012210 (2016), https://doi.org/10.1103/PhysRevE.93.012210
M. Bialous, B. Dietz, L. Sirko, Phys. Rev. E 102, 042206 (2020), https://doi.org/10.1103/PhysRevE.102.042206
A. Bereczuk, B. Dietz, J. Che, J. Kuipers, J.-D. Urbina, K. Richter, Phys. Rev. E 103, 052209 (2021), https://doi.org/10.1103/PhysRevE.103.052209
M. Davy, P. Besnier, P. del Hougne, J. de Rosny, E. Richalot, F. Sarrazin, D.V. Savin, F. Mortessagne, U. Kuhl, O. Legrand, Phys. Rev. E 104, 044204 (2021), https://doi.org/10.1103/PhysRevE.104.044204
M. Bialous, B. Dietz, L. Sirko, Phys. Rev. E 107, 054210 (2023), https://doi.org/10.1103/PhysRevE.107.054210
M. Ławniczak, A. Akhshani, O. Farooq, M. Bialous, S. Bauch, B. Dietz, L. Sirko, Phys. Rev. E 107, 024203 (2023), https://doi.org/10.1103/PhysRevE.107.024203
T. Kottos, U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997), https://doi.org/10.1103/PhysRevLett.79.4794
T. Kottos, U. Smilansky, Phys. Rev. Lett. 85, 968 (2000), https://doi.org/10.1103/PhysRevLett.85.968
O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko, Phys. Rev. E 69, 056205 (2004), https://doi.org/10.1103/PhysRevE.69.056205
O. Hul, O. Tymoshchuk, S. Bauch, P.M. Koch, L. Sirko, J. Phys. A Math. Gen. 38, 10489 (2005), https://doi.org/10.1088/0305-4470/38/49/003
E. Doron, U. Smilansky, A. Frenkel, Phys. Rev. Lett. 65, 3072 (1990), https://doi.org/10.1103/PhysRevLett.65.3072
S. Sridhar, Phys. Rev. Lett. 67, 785 (1991), https://doi.org/10.1103/PhysRevLett.67.785
H.-D. Gräf, H.L. Harney, H. Lengeler, C.H. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt, H.A. Weidenmüller, Phys. Rev. Lett. 69, 1296 (1992), https://doi.org/10.1103/PhysRevLett.69.1296
H. Alt, C.I. Barbosa, H.-D. Gräf, T. Guhr, H.L. Harney, R. Hofferbert, H. Rehfeld, A. Richter, Phys. Rev. Lett. 81, 4847 (1998), https://doi.org/10.1103/PhysRevLett.81.4847
H.-J. Stockmann, Quantum Chaos An Introduction, Cambridge University Press, 1999, http://doi.org/10.1017/CBO9780511524622
S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M. Miski-Oglu, A. Richter, F. Schäfer, Phys. Rev. Lett. 111, 030403 (2013), https://doi.org/10.1103/PhysRevLett.111.030403
B. Dietz, A. Richter, Chaos 25, 097601 (2015), https://doi.org/10.1063/1.4915527
H. Alt, C. Dembowski, H.D. Graf, R. Hofferbert, H. Rehfeld, A. Richter, R. Schuhmann, T. Weiland, Phys. Rev. Lett. 79, 1026 (1997), https://doi.org/10.1103/PhysRevLett.79.1026
M. Ławniczak, O. Hul, S. Bauch, L. Sirko, Acta Phys. Pol. A 116, 11 (2009), https://doi.org/10.12693/APhysPolA.116.749
K. Selemani, J.-B. Gros, E. Richalot, O. Legrand, O. Picon, F. Mortessagne, IEEE Trans. Electromagn. Compat. 57, 3 (2015), https://doi.org/10.1109/TEMC.2014.2313355
T. Sleasman, R. Duggan, R.S. Awadallah, D. Shrekenhamer, Phys. Rev. Appl. 20, 014004 (2023), https://doi.org/10.1103/PhysRevApplied.20.014004
J. Erb, D. Shrekenhamer, T. Sleasman, T.M. Antonsen, S.M. Anlage, Acta Phys. Pol. A 144, 421 (2024), https://doi.org/10.12693/APhysPolA.144.421
G. Gradoni, J.-H. Yeh, B. Xiao, T.M. Antonsen, S.M. Anlage, E. Ott, Wave Motion 51, 606 (2014), https://doi.org/10.1016/j.wavemoti.2014.02.003
Z. Fu, T. Koch, T.M. Antonsen, S.M. Anlage, Acta Phys. Pol. A 132, 1655 (2017), https://doi.org/10.12693/APhysPolA.132.1655
J.-H. Yeh S.M. Anlage, Rev. Sci. Instrum. 84, 034706 (2013), https://doi.org/10.1063/1.4797461