From Quasicrystal to Crystallines
Main Article Content
Abstract
The mathematical definitions of quasicrystals and crystallines are discussed within the framework of aperiodic crystals. It is shown that these are two different generalisations of ideal crystals, sharing long-range order and having completely different properties regarding short-range behaviour.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Kurasov, Y. Meyer, P. Sarnak, ``Crystalline measures: cinq ans aprés'' (2025) (to appear)
D. Gratias, M. Quiquandon, C. R. Phys. 20, 803 (2019), https://doi.org/10.1016/j.crhy.2019.05.009
R. Penrose, Bull. Inst. Math. Appl. 10, 266 (1974)
D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984), https://doi.org/10.1103/PhysRevLett.53.1951
D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984), https://doi.org/10.1103/PhysRevLett.53.2477
D. Levine, P.J. Steinhardt, Phys. Rev. B 34, 596 (1986), https://doi.org/10.1103/PhysRevB.34.596
L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu, Science 324, 1306 (2009), https://doi.org/10.1126/science.1170827
L. Bindi, M.A. Pasek, C. Ma, J. Hu, G. Cheng, N. Yao, P.D. Asimow, P.J. Steinhardt, Proc. Natl. Acad. Sci. USA 120, e2215484119 (2023), https://doi.org/10.1073/pnas.2215484119
R. Berger, Mem. Am. Math. Soc. 66, 72 (1966), https://doi.org/10.1090/memo/0066
B. Grünbaum, G.C. Shephard, Tilings and Patterns, W.H. Freeman and Company, New York 1989
Y. Meyer, Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Springer Berlin 1970 (in French), https://doi.org/10.1007/BFb0069680
Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, Amsterdam 1972
Y. Meyer, in: Beyond Quasicrystals, Eds. F. Axel, D. Gratias, Springer, Berlin 1995, p. 3, https://doi.org/10.1007/978-3-662-03130-8_1
J.C. Lagarias, Commun. Math. Phys. 179, 365 (1996), https://doi.org/10.1007/BF02102593
J.C. Lagarias, Discrete Comput. Geom. 21, 161 (1999), https://doi.org/10.1007/PL00009413
J.C. Lagarias, Discrete Comput. Geom. 21, 345 (1999), https://doi.org/10.1007/PL00009426
J.-P. Kahane, S. Mandelbrojt, Ann. Sci. Éc. Norm. Supér. 75, 57 (1958) (in French), https://doi.org/10.24033/asens.1066
H. Hamburger, Math. Ann. 85, 129 (1922) (in German), https://doi.org/10.1007/BF01449611
Y.F. Meyer, Proc. Natl. Acad. Sci. USA 113, 3152 (2016), https://doi.org/10.1073/pnas.1600685113
Felipe Gonçalves, (2023), https://arxiv.org/abs/2312.11185
P. Kurasov, P. Sarnak, J. Math. Phys. 61, 083501 (2020), https://doi.org/10.1063/5.0012286
B. Gutkin, U. Smilansky, J. Phys. A Math. Gen. 34, 6061 (2001), https://doi.org/10.1088/0305-4470/34/31/301
P. Kurasov, Ark. Mat. 46, 95 (2008), https://doi.org/10.1007/s11512-007-0059-4
P. Kurasov, J. Funct. Anal. 254, 934 (2008), https://doi.org/10.1016/j.jfa.2007.11.007
P. Kurasov, Spectral Geometry of Graphs, Birkhäuser/Springer, Berlin 2024, https://doi.org/10.1007/978-3-662-67872-5
P. Kurasov, M. Nowaczyk, J. Phys. A Math. Gen. 38, 4901 (2005), https://doi.org/10.1088/0305-4470/38/22/014
L. Alon, A. Cohen, C. Vinzant, J. Funct. Anal. 286, 110226 (2024), https://doi.org/10.1016/j.jfa.2023.110226
A. Olevskii, A. Ulanovskii, C. R. Math. 358, 1207 (2020), https://doi.org/10.5802/crmath.142
L. Alon, M. Kummer, P. Kurasov, C. Vinzant, Invent. Math. 239, 321 (2025), https://doi.org/10.1007/s00222-024-01307-8
L. Bindi, J.M. Eiler, Y. Guan, L.S. Hollister, G. MacPherson, P.J. Steinhardt, N. Yao, Proc. Natl. Acad. Sci. USA 109, 1396 (2012), https://doi.org/10.1073/pnas.1111115109