From Quasicrystal to Crystallines

Main Article Content

P. Kurasov

Abstract

The mathematical definitions of quasicrystals and crystallines are discussed within the framework of aperiodic crystals. It is shown that these are two different generalisations of ideal crystals, sharing long-range order and having completely different properties regarding short-range behaviour.

Article Details

How to Cite
[1]
P. Kurasov, “From Quasicrystal to Crystallines”, Acta Phys. Pol. A, vol. 148, no. 5, p. S45, Dec. 2025, doi: 10.12693/APhysPolA.148.S45.
Section
Special segment

References

P. Kurasov, Y. Meyer, P. Sarnak, ``Crystalline measures: cinq ans aprés'' (2025) (to appear)

D. Gratias, M. Quiquandon, C. R. Phys. 20, 803 (2019), https://doi.org/10.1016/j.crhy.2019.05.009

R. Penrose, Bull. Inst. Math. Appl. 10, 266 (1974)

D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984), https://doi.org/10.1103/PhysRevLett.53.1951

D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984), https://doi.org/10.1103/PhysRevLett.53.2477

D. Levine, P.J. Steinhardt, Phys. Rev. B 34, 596 (1986), https://doi.org/10.1103/PhysRevB.34.596

L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu, Science 324, 1306 (2009), https://doi.org/10.1126/science.1170827

L. Bindi, M.A. Pasek, C. Ma, J. Hu, G. Cheng, N. Yao, P.D. Asimow, P.J. Steinhardt, Proc. Natl. Acad. Sci. USA 120, e2215484119 (2023), https://doi.org/10.1073/pnas.2215484119

R. Berger, Mem. Am. Math. Soc. 66, 72 (1966), https://doi.org/10.1090/memo/0066

B. Grünbaum, G.C. Shephard, Tilings and Patterns, W.H. Freeman and Company, New York 1989

Y. Meyer, Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Springer Berlin 1970 (in French), https://doi.org/10.1007/BFb0069680

Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, Amsterdam 1972

Y. Meyer, in: Beyond Quasicrystals, Eds. F. Axel, D. Gratias, Springer, Berlin 1995, p. 3, https://doi.org/10.1007/978-3-662-03130-8_1

J.C. Lagarias, Commun. Math. Phys. 179, 365 (1996), https://doi.org/10.1007/BF02102593

J.C. Lagarias, Discrete Comput. Geom. 21, 161 (1999), https://doi.org/10.1007/PL00009413

J.C. Lagarias, Discrete Comput. Geom. 21, 345 (1999), https://doi.org/10.1007/PL00009426

J.-P. Kahane, S. Mandelbrojt, Ann. Sci. Éc. Norm. Supér. 75, 57 (1958) (in French), https://doi.org/10.24033/asens.1066

H. Hamburger, Math. Ann. 85, 129 (1922) (in German), https://doi.org/10.1007/BF01449611

Y.F. Meyer, Proc. Natl. Acad. Sci. USA 113, 3152 (2016), https://doi.org/10.1073/pnas.1600685113

Felipe Gonçalves, (2023), https://arxiv.org/abs/2312.11185

P. Kurasov, P. Sarnak, J. Math. Phys. 61, 083501 (2020), https://doi.org/10.1063/5.0012286

B. Gutkin, U. Smilansky, J. Phys. A Math. Gen. 34, 6061 (2001), https://doi.org/10.1088/0305-4470/34/31/301

P. Kurasov, Ark. Mat. 46, 95 (2008), https://doi.org/10.1007/s11512-007-0059-4

P. Kurasov, J. Funct. Anal. 254, 934 (2008), https://doi.org/10.1016/j.jfa.2007.11.007

P. Kurasov, Spectral Geometry of Graphs, Birkhäuser/Springer, Berlin 2024, https://doi.org/10.1007/978-3-662-67872-5

P. Kurasov, M. Nowaczyk, J. Phys. A Math. Gen. 38, 4901 (2005), https://doi.org/10.1088/0305-4470/38/22/014

L. Alon, A. Cohen, C. Vinzant, J. Funct. Anal. 286, 110226 (2024), https://doi.org/10.1016/j.jfa.2023.110226

A. Olevskii, A. Ulanovskii, C. R. Math. 358, 1207 (2020), https://doi.org/10.5802/crmath.142

L. Alon, M. Kummer, P. Kurasov, C. Vinzant, Invent. Math. 239, 321 (2025), https://doi.org/10.1007/s00222-024-01307-8

L. Bindi, J.M. Eiler, Y. Guan, L.S. Hollister, G. MacPherson, P.J. Steinhardt, N. Yao, Proc. Natl. Acad. Sci. USA 109, 1396 (2012), https://doi.org/10.1073/pnas.1111115109