An Idea for Measuring Spatial Coherency Matrices by Multiplexing Across a Reconfigurable Complex System onto a Single-Port Intensity Detector
Main Article Content
Abstract
We propose a technique for measuring the spatial coherency matrix of a wavefront based on a single-port intensity detector. Our method relies on multiplexing the incident wavefront across a series of known realizations of a reconfigurable complex system onto the intensity detector. We consider a multi-port chaotic cavity with partially reconfigurable boundary conditions as an embodiment of the reconfigurable complex system. This matches recent experiments with 3D chaotic cavities whose walls are partially covered with a programmable metasurface. We formulate a system model that rigorously accounts for multiple scattering based on multi-port network theory. Then, we numerically validate the principle. The appeal of our technique lies in the low hardware complexity.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L. Tian, J. Lee, S.B. Oh, G. Barbastathis, Opt. Express 20, 8296 (2012), https://doi.org/10.1364/OE.20.008296
H. Partanen, J. Turunen, J. Tervo, Opt. Lett. 39, 1034 (2014), https://doi.org/10.1364/OL.39.001034
B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sánchez-Soto, Nat. Commun. 5, 3275 (2014), https://doi.org/10.1038/ncomms4275
A.F. Abouraddy, K.H. Kagalwala, B.E. Saleh, Opt. Lett. 39, 2411 (2014), https://doi.org/10.1364/OL.39.002411
K.H. Kagalwala, H.E. Kondakci, A.F. Abouraddy, B.E. Saleh, Sci. Rep. 5, 15333 (2015), https://doi.org/10.1038/srep15333
K. Saastamoinen, L.-P. Leppänen, I. Vartiainen, A.T. Friberg, T. Setälä, Optica 5, 67 (2018), https://doi.org/10.1364/OPTICA.5.000067
Z. Huang, Y. Chen, F. Wang, S.A. Ponomarenko, Y. Cai, Phys. Rev. Appl. 13, 044042 (2020), https://doi.org/10.1103/PhysRevApplied.13.044042
Z. Wang, X. Lu, W. Huang, A. Konijnenberg, H. Zhang, C. Zhao, Y. Cai, Appl. Phys. Lett. 119, 111101 (2021), https://doi.org/10.1063/5.0061838
Y. Zhou, J. Zhao, D. Hay, K. McGonagle, R.W. Boyd, Z. Shi, Phys. Rev. Lett. 127, 040402 (2021), https://doi.org/10.1103/PhysRevLett.127.040402
T. Shirai, A.T. Friberg, Opt. Lett. 46, 4160 (2021), https://doi.org/10.1364/OL.436339
K. Lee, Y. Park, Phys. Rev. Appl. 12, 024003 (2019), https://doi.org/10.1103/PhysRevApplied.12.024003
C. Roques-Carmes, S. Fan, D.A. Miller, Light Sci. Appl. 13, 260 (2024), https://doi.org/10.1038/s41377-024-01622-y
J.-P. Liu, C.-H. Guo, W.-J. Hsiao, T.-C. Poon, P. Tsang, Opt. Lett. 40, 2366 (2015), https://doi.org/10.1364/OL.40.002366
A.C. Mandal, T. Sarkar, Z. Zalevsky, R.K. Singh, Sci. Rep. 12, 4564 (2022), https://doi.org/10.1038/s41598-022-08603-4
J. Sol, H. Prod'homme, L. Le Magoarou, P. del Hougne, Nat. Commun. 15, 2841 (2024), https://doi.org/10.1038/s41467-024-46916-2
P. del Hougne, IEEE Wirel. Commun. Lett. early access, Nov. 12 (2025), https://doi.org/10.1109/LWC.2025.3631881
P. del Hougne, (2025), https://www.arxiv.org/abs/2507.22750
T. Sleasman, M.F. Imani, J.N. Gollub, D.R. Smith, Appl. Phys. Lett. 107, 204104 (2015), https://doi.org/10.1063/1.4935941
Y.B. Li, L.L. Li, B.B. Xu, W. Wu, R.Y. Wu, X. Wan, Q. Cheng, T.J. Cui, Sci. Rep. 6, 23731 (2016), https://doi.org/10.1038/srep23731
P. del Hougne, (2025), https://arxiv.org/abs/2509.24537
B.D.O. Anderson, R.W. Newcomb, Proc. Inst. Electr. Eng. 113, 970 (1966), https://doi.org/10.1049/piee.1966.0161
T.T. Ha, Solid-State Microwave Amplifier Design, Wiley-Interscience, 1981
H. Prod'homme, P. del Hougne, (2024), https://arxiv.org/abs/2412.17884
P. del Hougne, (2025), https://arxiv.org/abs/2509.09506
C. Hammami, L. Le Magoarou, P. del Hougne, (2025), https://arxiv.org/abs/2508.01776
P. del Hougne, M. Davy, U. Kuhl, Phys. Rev. Appl. 13, 041004 (2020), https://doi.org/10.1103/PhysRevApplied.13.041004