A Flux-Tunable Discrete Angular Filter

Main Article Content

T.M. Lawrie
O.M. Brown

Abstract

Recent work by Lawrie et al. Phys. Rev. Research 7, 023209 (2025) introduced a non-diffracting resonant angular filter on a network of thin channels (modelled using quantum graph theory) that exhibits unit transmission of acoustic waves at a discrete, symmetry-paired set of incidence angles. This set is determined solely by the graph topology, while transmission at all other angles is strictly forbidden. In the present work, we study the same filtering geometry for waves governed by the magnetic Schrödinger equation rather than the classical wave equation. Using a phase shift induced by non-reciprocal wave propagation due to the presence of the magnetic potential, as well as tuning δ-type vertex boundary conditions, we make the previously topology-fixed discrete pass directions continuously tunable. Both the transmission angle and the transmission coefficient become control parameters. The resulting flux-tunable angular filtering device replaces the topology-constrained passbands with a programmable steering device, broadening the scope for wave-filter and beam-shaping applications. 

Article Details

How to Cite
[1]
T. Lawrie and O. Brown, “A Flux-Tunable Discrete Angular Filter”, Acta Phys. Pol. A, vol. 148, no. 5, p. S25, Dec. 2025, doi: 10.12693/APhysPolA.148.S25.
Section
Special segment

References

T.M. Lawrie, G. Tanner, G.J. Chaplain, Phys. Rev. Research 7, 023209 (2025), https://doi.org/10.1103/PhysRevResearch.7.023209

C.H. Wilcox, Scattering Theory for Diffraction Gratings, Vol. 46, Springer Science & Business Media, 2012, https://doi.org/10.1007/978-1-4612-1130-3

L. Brillouin, Wave Propagation and Group Velocity, Ed. H.S.W. Massey, Academic Press, New York 1960

R. Kumar, M. Kumar J.S. Chohan, S. Kumar, Mater. Today Proc. 56, 3016 (2022), https://doi.org/10.1016/j.matpr.2021.11.423

S. Paul, M.N. Hasan, H.C. Fu, P. Wang, Phys. Rev. B 110, 144304 (2024), https://doi.org/10.1103/PhysRevB.110.144304

Y. Chen, M. Kadic, M. Wegener, Nat. Commun. 12, 3278 (2021), https://doi.org/10.1038/s41467-021-23574-2

K. Wang, Y. Chen, M. Kadic, C. Wang, M. Wegener, Commun. Mater. 3, 11 (2022), https://doi.org/10.1038/s43246-022-00257-z

J.A. Iglesias Martínez, M.F. Groß, Y. Chen, T. Frenzel, V. Laude, M. Kadic, M. Wegener, Sci. Adv. 7, eabm2189 (2021), https://doi.org/10.1126/sciadv.abm2189

G.J. Chaplain, I.R. Hooper, A.P. Hibbins, T.A. Starkey, Phys. Rev. Appl. 19, 044061 (2023), https://doi.org/10.1103/PhysRevApplied.19.044061

D.B. Moore, J.R. Sambles, A.P. Hibbins, T.A. Starkey, G.J. Chaplain, Phys. Rev. B 107, 144110 (2023), https://doi.org/10.1103/PhysRevB.107.144110

Y. Chen, J.L.G. Schneider, M.F. Groß, K. Wang, S. Kalt, P. Scott, M. Kadic, M. Wegener, Adv. Funct. Mater. 34, 2302699 (2023), https://doi.org/10.1002/adfm.202302699

A. Kazemi, K.J. Deshmukh, F. Chen, Y. Liu, B. Deng, H.C. Fu, P. Wang, Phys. Rev. Lett. 131, 176101 (2023), https://doi.org/10.1103/PhysRevLett.131.176101

R. Fleury, Nat. Phys. 17, 766 (2021), https://doi.org/10.1038/s41567-021-01281-5

T. Lawrie, S. Gnutzmann G. Tanner, J. Phys. A Math. Theor. 56, 475202 (2023), https://doi.org/10.1088/1751-8121/ad03a5

T. Lawrie, Ph.D. Thesis, The University of Nottingham, 2025, https://doi.org/10.13140/RG.2.2.17826.70087

A. Drinko, F.M. Andrade, D. Bazeia, Phys. Rev. A 100, 062117 (2019), https://doi.org/10.1103/PhysRevA.100.062117

A. Drinko, F.M. Andrade, D. Bazeia, Eur. Phys. J. Plus 135, 451 (2020), https://doi.org/10.1140/epjp/s13360-020-00459-9

A. Akhshani, M. Białous, L. Sirko, Phys. Rev. E 108, 034219 (2023), https://doi.org/10.1103/PhysRevE.108.034219

S. Shukurov, C. Valagiannopoulos, IEEE Trans. Antennas Propag. 71, 6995 (2023), https://doi.org/10.1109/TAP.2023.3281090

T. Lawrie, G. Tanner, D. Chronopoulos, Sci. Rep. 12, 18006 (2022), https://doi.org/10.1038/s41598-022-22265-2

T.M. Lawrie, T.A. Starkey, G. Tanner, D.B. Moore, P. Savage, G.J. Chaplain, Phys. Rev. Mater. 8, 105201 (2024), https://doi.org/10.1103/PhysRevMaterials.8.105201

G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Vol. 186, American Mathematical Society, Providence (RI) 2013, https://doi.org/10.1090/surv/186

T. Kottos, U. Smilansky, Ann. Phys. 274, 76 (1999), https://doi.org/10.1006/aphy.1999.5904

P. Kuchment, H. Zeng, J. Math. Anal. Appl. 258, 671 (2001), https://doi.org/10.1006/jmaa.2000.7415

J. Rubinstein, M. Schatzman, Arch. Rational Mech. Anal. 160, 271 (2001), https://doi.org/10.1007/s002050100164

P. Exner, O. Post, J. Geom. Phys. 54, 77 (2005), https://doi.org/10.1016/j.geomphys.2004.08.003

S. Gnutzmann, U. Smilansky, Uzy, Adv. Phys. 55, 527 (2006), https://doi.org/10.1080/00018730600908042

J. Kempe, Contemp. Phys. 44, 307 (2003), https://doi.org/10.1080/00107151031000110776

G. Tanner, in: Non-Linear Dynamics and Fundamental Interactions, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 213, Springer, Dordrecht 2006, p. 69, https://doi.org/10.1007/1-4020-3949-2_6

B. Hein, G. Tanner, Phys. Rev. Lett. 103, 260501 (2009), https://doi.org/10.1103/PhysRevLett.103.260501

J. Guillamon, C.-Z. Wang, Z. Lin, T. Kottos, (2025), https://arxiv.org/abs/2503.21107

R.G. Edge, E. Paul, K.H. Madine, D.J. Colquitt, T.A. Starkey, G.J. Chaplain, New J. Phys. 27, 023007 (2025), https://doi.org/10.1088/1367-2630/adaf50

C. Brewer, S.C. Creagh, G. Tanner, J. Phys. A Math. Theor. 51, 445101 (2018), https://doi.org/10.1088/1751-8121/aae1d2

I.Y. Popov, I.V. Blinova, in: Analysis as a Tool in Mathematical Physics. In Memory of Boris Pavlov, Eds. P. Kurasov, A. Laptev, S. Naboko, B. Simon, Springer International Publishing, Cham 2020, p. 540, https://doi.org/10.1007/978-3-030-31531-3_28

Y.-F. Jiao, J. Wang, Q. Zhang, H.-Z. Lin, H. Jing, Fundam. Res. (2025) (in Press), https://doi.org/10.1016/j.fmre.2024.12.018

Y. Shoji, T. Mizumoto, Sci. Technol. Adv. Mater. 15, 014602 (2014), https://doi.org/10.1088/1468-6996/15/1/014602

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Phys. Rev. Lett. 104, 253902 (2010), https://doi.org/10.1103/PhysRevLett.104.253902

H. Kurt, in: 2013 15th Int. Conf. on Transparent Optical Networks (ICTON), IEEE, 2013, https://doi.org/10.1109/ICTON.2013.6602935

S.G. Kilic, U. Kilic, M. Schubert, E. Schubert, C. Argyropoulos, Phys. Rev. Appl. 24, 044009 (2025), https://doi.org/10.1103/dnp4-z1xk

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong, Nat. Photon. 10, 657 (2016), https://doi.org/10.1038/nphoton.2016.161

J. Kodz, K. Regelskis, N. Gavrilinas, J. Želudevičius, J. Opt. Soc. Am. B 41, 1929 (2024), https://doi.org/10.1364/JOSAB.529235

L.D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson, Nat. Photon. 8, 701 (2014), https://doi.org/10.1038/nphoton.2014.177

Y. Shoji, K. Miura T. Mizumoto, J. Opt. 18, 013001 (2016), https://doi.org/10.1088/2040-8978/18/1/013001

H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, Appl. Opt. 38, 7409 (1999), https://doi.org/10.1364/AO.38.007409

T. Nomura, X.-X. Zhang, S. Zherlitsyn, J. Wosnitza, Y. Tokura, N. Nagaosa, S. Seki, Phys. Rev. Lett. 122, 145901 (2019), https://doi.org/10.1103/PhysRevLett.122.145901

C. Caloz, Z.-L. Deck-Léger, IEEE Trans. Antennas Propag. 68, 1569 (2019), https://doi.org/10.1109/TAP.2019.2944225

C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 2005

A.A. Aldosri, M.H. Meylan, B. Wilks, (2024), https://arxiv.org/abs/2411.17954

M. Baradaran, P. Exner, J. Phys. A Math. Theor. 57, 265202 (2024), https://doi.org/10.1088/1751-8121/ad52d6

V. Kostrykin, R. Schrader, J. Phys. A Math. Gen. 32, 595 (1999), https://doi.org/10.1088/0305-4470/32/4/006

T.M. Lawrie, G. Tanner, G.J. Chaplain, Acta Phys. Pol. A 144, 486 (2023), https://doi.org/10.12693/APhysPolA.144.486