Feasibility of  H  Annihilation-Vertex Reconstruction with Modular J-PET: A Simulation-Based Study

Main Article Content

P. Pandey
S. Sharma
P. Moskal
R.C. Ferguson
R. Caravita (on behalf of the AEgIS Collaboration)
A.K. Venadan
G. Korcyl
K. Kacprzak

Abstract

The Antihydrogen Experiment: gravity, Interferometry, Spectroscopy at CERN aims to measure the gravitational acceleration of antihydrogen (H) atoms to test the weak equivalence principle for antimatter systems. In the proposed approach, a pulsed  H  beam, produced via charge exchange between Rydberg positronium and antiprotons, traverses a moiré deflectometer comprising two equally spaced gratings followed by a position-sensitive detector. As the beam traverses the moiré setup,  H  may  annihilate on the gratings or nearby structures, producing high-energy pions, or continue towards the position-sensitive detector. For a high-accuracy gravity measurement, precise knowledge of the beam profile and annihilation points is essential. We present results from a feasibility study of vertex reconstruction using modular J-PET detectors spanning the full axial length of the moiré setup. The generated pions, being minimum-ionising particles, follow straight paths. The adapted method is based on the consecutive registration of each pion, defining individual tracks in a pair of modules placed 10 cm apart. The hit positions are used to reconstruct the track direction, which is then projected back to estimate the spatial coordinates of the  H  annihilation vertex. For this feasibility study, we developed a customised Geant4-based simulation package and an analysis algorithm that implements a track-and-extrapolate algorithm to image the annihilation vertices.

Article Details

How to Cite
[1]
P. Pandey, “Feasibility of  H  Annihilation-Vertex Reconstruction with Modular J-PET: A Simulation-Based Study”, Acta Phys. Pol. A, vol. 148, no. 6, p. S169, Jan. 2026, doi: 10.12693/APhysPolA.148.S169.
Section
Special segment

References

C. Amole, M.D. Ashkezari, M. Baquero-Ruiz et al., Nat. Commun. 4, 1785 (2013), https://doi.org/10.1038/ncomms2787

P. Pérez, D. Banerjee, F. Biraben et al., Hyperfine Interact. 233, 21 (2015), https://doi.org/10.1007/s10751-015-1154-8

D. Krasnicky, S. Aghion, C. Amsler et al., AIP Conf. Proc. 1521, 144 (2013), https://doi.org/10.1063/1.4796070

S.G. Karshenboim, J. Phys. B At. Mol. Opt. Phys. 49, 144001 (2016), https://doi.org/10.1088/0953-4075/49/14/144001

M. Doser, C. Amsler, A. Belov et al., Class. Quantum Grav. 29, 184009 (2012), https://doi.org/10.1088/0264-9381/29/18/184009

S. Mariazzi, R. Caravita, M. Doser, G. Nebbia, R.S. Brusa, Eur. Phys. J. D 74, 79 (2020), https://doi.org/10.1140/epjd/e2020-100585-8

R. Caravita (on behalf of the AEgIS Collaboration), (2022), https://arxiv.org/abs/2208.07050

C. Amsler, M. Antonello, A. Belov et al., Commun. Phys. 4, 19 (2021), https://doi.org/10.1038/s42005-020-00494-z

K. Jefimovs, L. Romano, J. Vila-Comamala, M. Kagias, Z. Wang, L. Wang, C. Dais, H. Solak, M. Stampanoni, in: Advances in Patterning Materials and Processes XXXIV, Vol. 10146, SPIE, 2017, p. 101460L, https://doi.org/10.1117/12.2258007

R.C. Ferguson, S. Alfaro Campos, M. Auzins et al., J. Phys. Conf. Ser. 3029, 012005 (2025), https://doi.org/10.1088/1742-6596/3029/1/012005

M. Berghold, D. Orsucci, F. Guatieri et al., Sci. Adv. 11, eads1176 (2025), https://doi.org/10.1126/sciadv.ads1176

S. Aghion, O. Ahlén, C. Amsler et al., Nat. Commun. 5, 4538 (2014), https://doi.org/10.1038/ncomms5538

P. Conte, G. Consolati, M. Prata et al., (2025), https://arxiv.org/abs/2506.09274

P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, eadp2840 (2024), https://doi.org/10.1126/sciadv.adp2840

P. Moskal, E. Czerwiński, Juhi Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6

S. Sharma, L. Povolo, S. Mariazzi et al., Nucl. Instrum. Methods Phys. Res. A 1062, 169192 (2024), https://doi.org/10.1016/j.nima.2024.169192

S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003), https://doi.org/10.1016/S0168-9002(03)01368-8

P. Moskal, O. Rundel, D. Alfs et al., Phys. Med. Biol. 61, 2025 (2016), https://doi.org/10.1088/0031-9155/61/5/2025

M. Das, R. Bayerlein, S. Sharma et al., Bio-Algorithms Med-Syst. 20, 101 (2024), https://doi.org/10.5604/01.3001.0054.9362

P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273

F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 1 (2024), https://doi.org/10.5604/01.3001.0054.8095

G. Korcyl, D. Alfs, T. Bednarski et al., Acta Phys. Pol. B 47, 491 (2016), https://doi.org/10.5506/APhysPolB.47.491

S. Sharma, K. Kacprzak, K. Dulski et al., J. Phys. Conf. Ser. 2374, 012040 (2022), https://doi.org/10.1088/1742-6596/2374/1/012040

E. Klempt, C. Batty, J. Richard, Phys. Rep. 413, 197 (2005), https://doi.org/10.1016/j.physrep.2005.03.002

C. Amsler, Rev. Mod. Phys. 70, 1293 (1998), https://doi.org/10.1103/RevModPhys.70.1293

D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, S. Leray, Phys. Rev. C 90, 054602 (2014), https://doi.org/10.1103/PhysRevC.90.054602

C. Amsler, H. Breuker, M. Bumbar et al., Eur. Phys. J. A 60, 225 (2024), https://doi.org/10.1140/epja/s10050-024-01428-x

J. Apilluelo L. Asquith, E.F. Bannister et al., (2025), https://arxiv.org/abs/2507.13864