Feasibility of H Annihilation-Vertex Reconstruction with Modular J-PET: A Simulation-Based Study
Main Article Content
Abstract
The Antihydrogen Experiment: gravity, Interferometry, Spectroscopy at CERN aims to measure the gravitational acceleration of antihydrogen (H) atoms to test the weak equivalence principle for antimatter systems. In the proposed approach, a pulsed H beam, produced via charge exchange between Rydberg positronium and antiprotons, traverses a moiré deflectometer comprising two equally spaced gratings followed by a position-sensitive detector. As the beam traverses the moiré setup, H may annihilate on the gratings or nearby structures, producing high-energy pions, or continue towards the position-sensitive detector. For a high-accuracy gravity measurement, precise knowledge of the beam profile and annihilation points is essential. We present results from a feasibility study of vertex reconstruction using modular J-PET detectors spanning the full axial length of the moiré setup. The generated pions, being minimum-ionising particles, follow straight paths. The adapted method is based on the consecutive registration of each pion, defining individual tracks in a pair of modules placed 10 cm apart. The hit positions are used to reconstruct the track direction, which is then projected back to estimate the spatial coordinates of the H annihilation vertex. For this feasibility study, we developed a customised Geant4-based simulation package and an analysis algorithm that implements a track-and-extrapolate algorithm to image the annihilation vertices.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
C. Amole, M.D. Ashkezari, M. Baquero-Ruiz et al., Nat. Commun. 4, 1785 (2013), https://doi.org/10.1038/ncomms2787
P. Pérez, D. Banerjee, F. Biraben et al., Hyperfine Interact. 233, 21 (2015), https://doi.org/10.1007/s10751-015-1154-8
D. Krasnicky, S. Aghion, C. Amsler et al., AIP Conf. Proc. 1521, 144 (2013), https://doi.org/10.1063/1.4796070
S.G. Karshenboim, J. Phys. B At. Mol. Opt. Phys. 49, 144001 (2016), https://doi.org/10.1088/0953-4075/49/14/144001
M. Doser, C. Amsler, A. Belov et al., Class. Quantum Grav. 29, 184009 (2012), https://doi.org/10.1088/0264-9381/29/18/184009
S. Mariazzi, R. Caravita, M. Doser, G. Nebbia, R.S. Brusa, Eur. Phys. J. D 74, 79 (2020), https://doi.org/10.1140/epjd/e2020-100585-8
R. Caravita (on behalf of the AEgIS Collaboration), (2022), https://arxiv.org/abs/2208.07050
C. Amsler, M. Antonello, A. Belov et al., Commun. Phys. 4, 19 (2021), https://doi.org/10.1038/s42005-020-00494-z
K. Jefimovs, L. Romano, J. Vila-Comamala, M. Kagias, Z. Wang, L. Wang, C. Dais, H. Solak, M. Stampanoni, in: Advances in Patterning Materials and Processes XXXIV, Vol. 10146, SPIE, 2017, p. 101460L, https://doi.org/10.1117/12.2258007
R.C. Ferguson, S. Alfaro Campos, M. Auzins et al., J. Phys. Conf. Ser. 3029, 012005 (2025), https://doi.org/10.1088/1742-6596/3029/1/012005
M. Berghold, D. Orsucci, F. Guatieri et al., Sci. Adv. 11, eads1176 (2025), https://doi.org/10.1126/sciadv.ads1176
S. Aghion, O. Ahlén, C. Amsler et al., Nat. Commun. 5, 4538 (2014), https://doi.org/10.1038/ncomms5538
P. Conte, G. Consolati, M. Prata et al., (2025), https://arxiv.org/abs/2506.09274
P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, eadp2840 (2024), https://doi.org/10.1126/sciadv.adp2840
P. Moskal, E. Czerwiński, Juhi Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6
S. Sharma, L. Povolo, S. Mariazzi et al., Nucl. Instrum. Methods Phys. Res. A 1062, 169192 (2024), https://doi.org/10.1016/j.nima.2024.169192
S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003), https://doi.org/10.1016/S0168-9002(03)01368-8
P. Moskal, O. Rundel, D. Alfs et al., Phys. Med. Biol. 61, 2025 (2016), https://doi.org/10.1088/0031-9155/61/5/2025
M. Das, R. Bayerlein, S. Sharma et al., Bio-Algorithms Med-Syst. 20, 101 (2024), https://doi.org/10.5604/01.3001.0054.9362
P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273
F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 1 (2024), https://doi.org/10.5604/01.3001.0054.8095
G. Korcyl, D. Alfs, T. Bednarski et al., Acta Phys. Pol. B 47, 491 (2016), https://doi.org/10.5506/APhysPolB.47.491
S. Sharma, K. Kacprzak, K. Dulski et al., J. Phys. Conf. Ser. 2374, 012040 (2022), https://doi.org/10.1088/1742-6596/2374/1/012040
E. Klempt, C. Batty, J. Richard, Phys. Rep. 413, 197 (2005), https://doi.org/10.1016/j.physrep.2005.03.002
C. Amsler, Rev. Mod. Phys. 70, 1293 (1998), https://doi.org/10.1103/RevModPhys.70.1293
D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, S. Leray, Phys. Rev. C 90, 054602 (2014), https://doi.org/10.1103/PhysRevC.90.054602
C. Amsler, H. Breuker, M. Bumbar et al., Eur. Phys. J. A 60, 225 (2024), https://doi.org/10.1140/epja/s10050-024-01428-x
J. Apilluelo L. Asquith, E.F. Bannister et al., (2025), https://arxiv.org/abs/2507.13864