Endorsing Titanium–Scandium Radionuclide Generator for PET and Positronium Imaging

Main Article Content

P. Moskal
A. Khreptak
J. Choiński
P. Jones
I. Kadenko
A. Majkowska-Pilip
R. Palit
A. Stolarz
R. Walczak
E. Stępień

Abstract

The development of positron emission tomography and positronium imaging techniques is strictly related to the availability of suitable radionuclides and robust radiochemistry platforms. Among the emerging candidates, 44Sc has attracted significant interest due to its favourable physical properties, including a half-life of ~4 h, a pure β+ emission profile, and the additional prompt γ-emission that enables advanced triple-photon detection schemes. These characteristics make 44Sc particularly promising for high-resolution imaging and novel quantitative methodologies. However, routine clinical and preclinical implementation requires a practical, sustainable, and cost-efficient production route. In this context, we propose a titanium–scandium radionuclide generator as an optimal solution. This study focuses on optimising the synthesis of the long-lived parent isotope, 44Ti  (T1/2 = 59.1 years), from which 44Sc can be selectively eluted in a chemically pure form when needed. An analysis of various production pathways was conducted, including proton and deuteron reactions on scandium, as well as α-particle and lithium-induced reactions on calcium, to determine the most efficient reaction parameters, target design, and expected yield. Furthermore, we identify some existing cyclotron facilities suitable for implementing this technology. Results indicate that efficient 44Ti production is achievable using proton beams in the 20–30 MeV range under extended irradiation conditions. The proposed generator system would enable routine and decentralised 44Sc supply. Its integration with the novel Jagiellonian positron emission tomography scanner may significantly reduce diagnostic costs and improve access to advanced positron emission tomography imaging in regions with limited medical imaging infrastructure. 

Article Details

How to Cite
[1]
P. Moskal, “Endorsing Titanium–Scandium Radionuclide Generator for PET and Positronium Imaging”, Acta Phys. Pol. A, vol. 148, no. 6, p. S152, Jan. 2026, doi: 10.12693/APhysPolA.148.S152.
Section
Special segment

References

P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273

P. Moskal, E.Ł. Stępień, PET Clin. 15, 439 (2020), https://doi.org/10.1016/j.cpet.2020.06.009

P. Moskal, in: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Piscataway (NJ), 2021 p. 1, https://doi.org/10.1109/NSS/MIC44867.2021.9875524

P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, eadp2840 (2024), https://doi.org/10.1126/sciadv.adp2840

A. Alavi, T.J. Werner, E.Ł. Stępień, P. Moskal, Bio-Algorithms Med-Syst. 17, 203 (2021), https://doi.org/10.1515/bams-2021-0186

G. Brownell, W. Sweet, Nucleonics 11, 40 (1953)

M.M. Ter-Pogossian, M.E. Phelps, E.J. Hoffman, N.A. Mullani, Radiology 114, 89 (1975), https://doi.org/10.1148/114.1.89

T. Jones, D. Townsend, J. Med. Imaging 4, 011013 (2017), https://doi.org/10.1117/1.JMI.4.1.011013

B. Clarke, J. Nucl. Med. Technol. 46, 12 (2018), https://doi.org/10.2967/jnmt.117.205021

J.L. Ryan, V.D. Aaron, J.B. Sims, Semin. Ultrasound CT MRI 40, 376 (2019), https://doi.org/10.1053/j.sult.2019.07.002

P.G. Bharathi, S. Abbaszadeh, P. Moskal, A. Alavi, Bio-Algorithms Med-Syst. 21, 40 (2025), https://doi.org/10.5604/01.3001.0055.2175

A. Berger, BMJ 326, 1449 (2003), https://doi.org/10.1136/bmj.326.7404.1449

M. Kirienko, F. Gelardi, F. Fiz et al., Eur. J. Nucl. Med. Mol. Imaging 52, 208 (2024), https://doi.org/10.1007/s00259-024-06882-9

S. Basu, A. Alavi, Nucl. Med. Rev. 12, 1 (2009), https://journals.viamedica.pl/nuclear_medicine_review/article/view/15215

C. Rischpler, S.G. Nekolla, I. Dregely, M. Schwaiger, J. Nucl. Med. 54, 402 (2013), https://doi.org/10.2967/jnumed.112.105353

P. Moskal, E.Ł. Stępień, Front. Phys. 10, 969806 (2022), https://doi.org/10.3389/fphy.2022.969806

S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95, 021002 (2023), https://doi.org/10.1103/RevModPhys.95.021002

P. Moskal, A. Bilewicz, M. Das et al., IEEE Trans. Radiat. Plasma Med. Sci. 9, 981 (2025), https://doi.org/10.1109/TRPMS.2025.3583554

S. Parzych, Bio-Algorithms Med-Syst. 19, 80 (2023), https://doi.org/10.5604/01.3001.0054.1937

M. Das, W. Mryka, E.Y. Beyene, S. Parzych, S. Sharma, E. Stępień, P. Moskal, Bio-Algorithms Med-Syst. 19, 87 (2023), https://doi.org/10.5604/01.3001.0054.1938

S. Takyu, K. Shibuya, F. Nishikido, H. Tashima, M. Takahashi, T. Yamaya, Appl. Phys. Express 15, 106001 (2022), https://doi.org/10.35848/1882-0786/ac8d7b

S. Takyu, H. Ikeda, H. Wakizaka et al., Appl. Phys. Express 16, 116001 (2023), https://doi.org/10.35848/1882-0786/ad047c

P. Moskal, E. Kubicz, G. Grudzień, E. Czerwiński, K. Dulski, B. Leszczyński, S. Niedźwiecki, E.Ł. Stępień, EJNMMI Phys. 10, 22 (2023), https://doi.org/10.1186/s40658-023-00543-w

H. Karimi, P. Moskal, A. Żak, E.Ł. Stępień, Sci. Rep. 13, 7648 (2023), https://doi.org/10.1038/s41598-023-34571-4

K. Shibuya, H. Saito, F. Nishikido, M. Takahashi, T. Yamaya, Commun. Phys. 3, 173 (2020), https://doi.org/10.1038/s42005-020-00440-z

P. Moskal, E. Stępień, Bio-Algorithms Med-Syst. 17, 311 (2021), https://doi.org/10.1515/bams-2021-0189

M. Das, S. Sharma, E.Y. Beyene et al., IEEE Trans. Radiat. Plasma Med. Sci., (2025) (early access), https://doi.org/10.1109/TRPMS.2025.362155

P. Moskal, K. Dulski, N. Chug et al., Sci. Adv. 7, eabh4394 (2021), https://doi.org/10.1126/sciadv.abh4394

B. Huang, Z. Wang, X. Zeng, A.H. Goldan, J. Qi, Commun. Phys. 8, 181 (2025), https://doi.org/10.1038/s42005-025-02100-6

G.A. Prenosil, H. Sari, M. Fürstner, A. Afshar-Oromieh, K. Shi, A. Rominger, M. Hentschel, J. Nucl. Med. 63, 476 (2022), https://doi.org/10.2967/jnumed.121.261972

W.M. Steinberger, L. Mercolli, J. Breuer et al., EJNMMI Phys. 11, 76 (2024), https://doi.org/10.1186/s40658-024-00678-4

L. Mercolli, W.M. Steinberger, H. Sari et al., medRxiv1020 (2024), https://doi.org/10.1101/2024.10.19.24315509

J.S. Karp, V. Viswanath, M.J. Geagan, G. Muehllehner, A.R. Pantel, M.J. Parma, A.E. Perkins, J.P. Schmall, M.E. Werner, M.E. Daube-Witherspoon, J. Nucl. Med. 61, 136 (2020), https://doi.org/10.2967/jnumed.119.229997

B. Dai, M.E. Daube-Witherspoon, S. McDonald, M.E. Werner, M.J. Parma, M.J. Geagan, V. Viswanath, J.S. Karp, Phys. Med. Biol. 68, 095007 (2023), https://doi.org/10.1088/1361-6560/acc722

B. Huang, B. Dai, E.J. Li, J.S. Karp, J. Qi, in: 2024 IEEE Nuclear Science Symp. (NSS), Medical Imaging Conf. (MIC) and Room Temperature Semiconductor Detector Conf. (RTSD), Tampa (FL), 2024 p. 1, https://doi.org/10.1109/NSS/MIC/RTSD57108.2024.10656096

B. Huang, B. Dai, S.E. Lapi, G. Liles, J.S. Karp, J. Qi, J. Nucl. Med. 66, 1464 (2025), https://doi.org/10.2967/jnumed.125.270130

S. Samanta, X. Sun, H. Li, Y. Li, in: 2023 IEEE Nuclear Science Symp., Medical Imaging Conf. and Int. Symp. on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), Vancouver (BC) Canada] 10.1109/NSSMICRTSD49126.2023.10338538, 2023, p. 1

S. Takyu, K. Matsumoto, T. Hirade, F. Nishikido, G. Akamatsu, H. Tashima, M. Takahashi, T. Yamaya, Jpn. J. Appl. Phys. 63, 086003 (2024), https://doi.org/10.35848/1347-4065/ad679a

S. Takyu, F. Nishikido, H. Tashima, G. Akamatsu, K. Matsumoto, M. Takahashi, T. Yamaya, Nucl. Instrum. Methods Phys. Res. A 1065, 169514 (2024), https://doi.org/10.1016/j.nima.2024.169514

J. Qi, B. Huang, IEEE Trans. Med. Imaging 41, 2848 (2022), https://doi.org/10.1109/TMI.2022.3174561

B. Huang, T. Li, G. Ariño-Estrada, K. Dulski, R.Y. Shopa, P. Moskal, E. Stępień, J. Qi, IEEE Trans. Med. Imaging 43, 2148 (2024), https://doi.org/10.1109/TMI.2024.3357659

B. Huang, J. Qi, Phys. Med. Biol. 69, 24NT01 (2024), https://doi.org/10.1088/1361-6560/ad9543

H.-H. Huang, Z. Zhu, S. Booppasiri, Z. Chen, S. Pang, C.-M. Kao, IEEE Trans. Radiat. Plasma Med. Sci. 9, 478 (2025), https://doi.org/10.1109/TRPMS.2025.3531225

L. Berens, I. Hsu, C.-T. Chen, H. Halpern, C.-M. Kao, Bio-Algorithms Med-Syst. 20, 40 (2024), https://doi.org/10.5604/01.3001.0054.9141

Z. Chen, L. An, C.-M. Kao, H.-H. Huang, Bio-Algorithms Med-Syst. 19, 1 (2023), https://doi.org/10.5604/01.3001.0054.1807

Z. Chen, C.-M. Kao, H.-H. Huang, L. An, Front. Phys. 12, 1 (2024), https://doi.org/10.3389/fphy.2024.1429344

R.Y. Shopa, K. Dulski, Bio-Algorithms Med-Syst. 19, 54 (2023), https://doi.org/10.5604/01.3001.0054.1826

B. Nelson, J. Andersson, F. Wuest, S. Spreckelmeyer, EJNMMI Radiopharm. Chem. 7, 27 (2022), https://doi.org/10.1186/s41181-022-00180-1

National Nuclear Data Center (NNDC), Nudat 3: Nu-1066 clear structure and decay data, 2025 (accessed: Oct. 2025), https://www.nndc.bnl.gov/nudat3/

M. Sitarz, J.-P. Cussonneau, T. Matulewicz, F. Haddad, Appl. Radiat. Isot. 155, 108898 (2020), https://doi.org/10.1016/j.apradiso.2019.108898

E. García-Toraño, V. Peyrés, M. Roteta, A. Sánchez-Cabezudo, E. Romero, A.M. Ortega, Appl. Radiat. Isot. 109, 314 (2016), https://doi.org/10.1016/j.apradiso.2015.12.007

M.T. Durán, F. Juget, Y. Nedjadi, C. Bailat, P.V. Grundler, Z. Talip, N.P. van der Meulen, P. Casolaro, G. Dellepiane, S. Braccini, Appl. Radiat. Isot. 190, 110507 (2022), https://doi.org/10.1016/j.apradiso.2022.110507

G. Trencsényi, Z. Képes, Int. J. Mol. Sci. 24, 7400 (2023), https://doi.org/10.3390/ijms24087400

E. Eppard, A. de la Fuente, M. Benešová, A. Khawar, R.A. Bundschuh, F.C. Gärtner, B. Kreppel, K. Kopka, M. Essler, F. Rösch, Theranostics 7, 4359 (2017), https://doi.org/10.7150/thno.20586

N. Benabdallah, H. Zhang, R. Unnerstall, A. Fears, L. Summer, M. Fassbender, B. Rodgers, D. Abou, V. Radchenko, D. Thorek, EJNMMI Res. 13, 17 (2023), https://doi.org/10.1186/s13550-023-00968-5

F. Rosar, H.-G. Buchholz, S. Michels, M. Hoffmann, M. Piel, C. Waldmann, F. Rösch, S. Reuss, M. Schreckenberger, EJNMMI Phys. 7, 16 (2020), https://doi.org/10.1186/s40658-020-0286-3

A. Majkowska-Pilip, A. Bilewicz, J. Inorg. Biochem. 105, 313 (2011), https://doi.org/10.1016/j.jinorgbio.2010.11.003

B.A. Vaughn, A.J. Koller, Z. Chen et al., Bioconjug. Chem. 32, 1232 (2021), https://doi.org/10.1021/acs.bioconjchem.0c00574

C.A. Umbricht, M. Benešová, R.M. Schmid, A. Türler, R. Schibli, N.P. van der Meulen, C. Müller, EJNMMI Res. 7, 9 (2017), https://doi.org/10.1186/s13550-017-0257-4

K.A. Domnanich, C. Müller, M. Benešová, R. Dressler, S. Haller, U. Köster, B. Ponsard, R. Schibli, A. Türler, N.P. van der Meulen, EJNMMI Radiopharm. Chem. 2, 5 (2017), https://doi.org/10.1186/s41181-017-0024-x

M. Pruszyński, A. Majkowska-Pilip, N.S. Loktionova, E. Eppard, F. Rösch, Appl. Radiat. Isot. 70, 974 (2012), https://doi.org/10.1016/j.apradiso.2012.03.005

R. Kerdjoudj, M. Pniok, C. Alliot, V. Kubíček, J. Havlíčková, F. Rösch, P. Hermann, S. Huclier-Markai, Dalton Trans. 45, 1398 (2016), https://doi.org/10.1039/C5DT04084A

A. Singh, N.P. van der Meulen, C. Müller, I. Klette, H.R. Kulkarni, A. Türler, R. Schibli, R.P. Baum, Cancer Biother. Radiopharm. 32, 124 (2017), https://doi.org/10.1089/cbr.2016.2173

A. Khawar, E. Eppard, J. Sinnes, F. Rösch, H. Ahmadzadehfar, S. Kürpig, M. Meisenheimer, F. Gaertner, M. Essler, R. Bundschuh, Clin. Nucl. Med. 43, 323 (2018), https://doi.org/10.1097/RLU.0000000000002003

H. Honarvar, C. Müller, S. Cohrs, S. Haller, K. Westerlund, A.E. Karlström, N. van der Meulen, R. Schibli, V. Tolmachev, Nucl. Med. Biol. 45, 15 (2017), https://doi.org/10.1016/j.nucmedbio.2016.10.004

P. Moskal, S. Niedźwiecki, T. Bednarski et al., Nucl. Instrum. Methods Phys. Res. A 764, 317 (2014), https://doi.org/10.1016/j.nima.2014.07.052

P. Moskal, P. Kowalski, R.Y. Shopa et al., Phys. Med. Biol. 66, 175015 (2021), https://doi.org/10.1088/1361-6560/ac16bd

S. Sharma, J. Baran, R.S. Brusa et al., J. Instrum. 18, C02027 (2023), https://doi.org/10.1088/1748-0221/18/02/C02027

M. Das, R. Bayerlein, S. Sharma et al., Bio-Algorithms Med-Syst. 20, 101 (2024), https://doi.org/10.5604/01.3001.0054.9362

F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 1 (2024), https://doi.org/10.5604/01.3001.0054.8095

G. Korcyl, P. Moskal, T. Bednarski et al., Bio-Algorithms Med-Syst. 10, 37 (2014), https://doi.org/10.1515/bams-2013-0115

G. Korcyl, P. Białas, C. Curceanu et al., IEEE Trans. Med. Imaging 37, 2526 (2018), https://doi.org/10.1109/TMI.2018.2837741

P. Moskal, D. Kumar, S. Sharma et al., Sci. Adv. 11, eads3046 (2025), https://doi.org/10.1126/sciadv.ads3046

V. Pichler, N. Berroterán-Infante, C. Philippe, C. Vraka, E.-M. Klebermass, T. Balber, S. Pfaff, L. Nics, M. Mitterhauser, W. Wadsak, J. Nucl. Med. 59, 1350 (2018), https://doi.org/10.2967/jnumed.117.190793

S. Krajewski, I. Cydzik, K. Abbas, A. Bulgheroni, F. Simonelli, U. Holzwarth, A. Bilewicz, Radiochim. Acta 101, 333 (2013), https://doi.org/10.1524/ract.2013.2032

C.E. Schmidt, L. Gajecki, M.A. Deri, V.A. Sanders, Curr. Radiopharm. 16, 95 (2023), https://doi.org/10.2174/1874471016666221111154424

A.A. Larenkov, A.G. Makichyan, V.N. Iatsenko, Molecules 26, 6371 (2021), https://doi.org/10.3390/molecules26216371

L. Gajecki, C.M. Marino, C.S. Cutler, V.A. Sanders, Appl. Radiat. Isot. 192, 110588 (2023), https://doi.org/10.1016/j.apradiso.2022.110588

N.P. van der Meulen, M. Bunka, K.A. Domnanich, C. Müller, S. Haller, C. Vermeulen, A. Türler, R. Schibli, Nucl. Med. Biol. 42, 745 (2015), https://doi.org/10.1016/j.nucmedbio.2015.05.005

N.P. van der Meulen, R. Hasler, Z. Talip, P.V. Grundler, C. Favaretto, C.A. Umbricht, C. Müller, G. Dellepiane, T.S. Carzaniga, S. Braccini, Molecules 25, 4706 (2020), https://doi.org/10.3390/molecules25204706

G. Dellepiane, P. Casolaro, A. Gottstein, I. Mateu, P. Scampoli, S. Braccini, Appl. Radiat. Isot. 206, 111220 (2024), https://doi.org/10.1016/j.apradiso.2024.111220

R. Ejnisman, I.D. Goldman, P.R. Pascholati et al., Phys. Rev. C 54, 2047 (1996), https://doi.org/10.1103/PhysRevC.54.2047

H. Hassan, M. Al-Abyad, G. Mohamed, Arab J. Nucl. Sci. Appl. 51, 57 (2018), https://www.researchgate.net/publication/317620933_Production_of_44Ti44Sc_generator_in_comparison_with_direct_routes_by_cyclotrons_cross_section_evaluation_using_nuclear_models_codes

L. Daraban, R.A. Rebeles, A. Hermanne, F. Tárkányi, S. Takács, Nucl. Instrum. Methods Phys. Res. B 267, 755 (2009), https://doi.org/10.1016/j.nimb.2009.01.010

J. Coursey, D. Schwab, J. Tsai, R. Dragoset, ``Atomic Weights and Isotopic Compositions with Relative Atomic Masses'', NIST, 1999 (accessed: Oct. 2025), https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses

T. McGee, C. Rao, G. Saha, L. Yaffe, Nucl. Phys. A 150, 11 (1970), https://doi.org/10.1016/0375-9474(70)90451-3

F. Ditrói, S. Takács, M. Aikawa, D. Gantumur, H. Huang, S. Goto, H. Haba, Z. Szücs, F. Tárkányi, Radiat. Phys. Chem. 218, 111572 (2024), https://doi.org/10.1016/j.radphyschem.2024.111572

V. Levkovskij, ``Activation Cross Sections for the Nuclides of Medium Mass Region (A = 40-100) with Protons and alpha-Particles at Medium Energies (E = 10-50 MeV)'', INTER-VESTI, Moscow, 1991

International Atomic Energy Agency (IAEA), ``Charged-Particle Cross Section Database for Medical Radioisotope Production'' (accessed: Oct. 2025), https://www-nds.iaea.org/medical/index.html

A.J. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, ``TENDL-2023: Complete Nuclear Data Library for Innovative Nuclear Science and Technology'', 2025

A.J. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019), https://doi.org/10.1016/j.nds.2019.01.002

S. Kuhn, I. Spahn, B. Scholten, H. Coenen, Radiochim. Acta 103, 403 (2015), https://doi.org/10.1016/j.nimb.2011.09.002

A. Hermanne, R. A. Rebeles, F. Tárkányi, S. Takács, M.P. Takács, J. Csikai, A. Ignatyuk, Nucl. Instrum. Methods Phys. Res. B 270, 106 (2012), https://doi.org/10.1016/j.nimb.2011.09.002

Z. Tsoodol, M. Aikawa, D. Ichinkhorloo, T. Khishigjargal, E. Norov, Y. Komori, H. Haba, S. Takács, F. Ditrói, Z. Szücs, Appl. Radiat. Isot. 166, 109448 (2020), https://doi.org/10.1016/j.apradiso.2020.109448

N.K. Skobelev, A.A. Kulko, V. Kroha et al., J. Phys. G Nucl. Part. Phys. 38, 035106 (2011), https://doi.org/10.1088/0954-3899/38/3/035106

P. Mohr, Eur. Phys. J. A 51, 56 (2015), https://doi.org/10.1140/epja/i2015-15056-5

P. Mohr, Int. J. Mod. Phys. E 28, 1950029 (2019), https://doi.org/10.1142/S0218301319500290

C.W. Cheng, J.D. King, J. Phys. G Nucl. Phys. 5, 1261 (1979), https://doi.org/10.1088/0305-4616/5/9/010

M.A. Buckby, J.D. King, J. Phys. G Nucl. Phys. 9, 85 (1983), https://doi.org/10.1088/0305-4616/9/1/013

R.I. Cutler, K.W. Kemper, A. Roy, Phys. Rev. C 21, 1799 (1980), https://doi.org/10.1103/PhysRevC.21.1799

W. Chen, H. Guo, W. Sun, T. Ye, Y. Ying, Y. Han, Q. Shen, J. Phys. G Nucl. Part. Phys. 47, 025106 (2020), https://doi.org/10.1088/1361-6471/ab52d3

IAEA, Cyclotron Produced Radionuclides: Principles and Practice, Tech. Rep. 465, International Atomic Energy Agency, Vienna 2009, https://www.iaea.org/publications/7849/cyclotron-produced-radionuclides-principles-and-practice

J. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010), https://doi.org/10.1016/j.nimb.2010.02.091

J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM: The Stopping and Range of Ions in Matter, 2010, (accessed: Oct. 2025), http://www.srim.org/

J.R. Rumble, CRC Handbook of Chemistry and Physics, 100th ed., CRC Press, Boca Raton (FL) 2019

J.D. Stinson, in: Proc. of the 1974 Annual Conference of the Nuclear Target Development Society, Chalk River (ON) Canada, 1976 p. 100, AECL-5503, https://inis.iaea.org/records/nm5yp-az422

A. Stolarz, M. Sitarz, K. Szkliniarz, J. Choiński, J. Jastrzębski, A. Trzcińska, W. Zipper, EPJ Web Conf. 229, 06004 (2020), https://doi.org/10.1051/epjconf/202022906004

A. Stolarz, J. A. Kowalska, J. Jastrzębski, J. Choiński, M. Sitarz, K. Szkliniarz, A. Trzcińska, W. Zipper, AIP Conf. Proc. 1962, 020004 (2018), https://doi.org/10.1063/1.5035517

M. Aikawa, S. Ebata, S. Imai, Nucl. Instrum. Methods Phys. Res. B 353, 1 (2015), https://doi.org/10.1016/j.nimb.2015.04.002

D.V. Filosofov, N.S. Loktionova, F. Rösch, Radiochim. Acta 98, 149 (2010), https://doi.org/10.1524/ract.2010.1701

V. Radchenko, C.A.L. Meyer, J.W. Engle et al., J. Chromatogr. A 1477, 39 (2016), https://doi.org/10.1016/j.chroma.2016.11.047

V. Radchenko, J.W. Engle, D.G. Medvedev et al., Nucl. Med. Biol. 50, 25 (2017), https://doi.org/10.1016/j.nucmedbio.2017.03.006

E. Lee, M. Hur, Y. Kong, in: Proc. Int. Conf. on Cyclotrons and Their Applications (Cyclotrons 2016), Zurich, 2017 p. 10, https://10.18429/JACoW-Cyclotrons2016-MOP218

K.V. Becker, E. Aluicio-Sarduy, T. Bradshaw et al., Front. Chem. 11, 1167783 (2023), https://doi.org/10.3389/fchem.2023.1167783

Y. Feng, Y. Shao, Z. Li, M. Luo, D. Xu, L. Ma, Processes 13, 521 (2025), https://doi.org/10.3390/pr13020521

K. Szkliniarz, J. Jastrzębski, A. Bilewicz et al., Acta Phys. Pol. A 127, 1471 (2015), https://doi.org/10.12693/APhysPolA.127.1471

K. Szkliniarz, M. Sitarz, R. Walczak et al., Appl. Radiat. Isot. 118, 182 (2016), https://doi.org/10.1016/j.apradiso.2016.07.001

A. Bilewicz, R. Walczak, K. Szkliniarz et al., Eur. J. Nucl. Med. Mol. Imaging 42, S196 (2015), https://doi.org/10.1007/s00259-015-3198-z

R. Walczak, S. Krajewski, K. Szkliniarz et al., EJNMMI Phys. 2, 33 (2015), https://doi.org/10.1186/s40658-015-0136-x

M. Sitarz, K. Szkliniarz, J. Jastrzębski et al., Appl. Radiat. Isot. 142, 104 (2018), https://doi.org/10.1016/j.apradiso.2018.09.025

M. Sitarz, K. Szkliniarz, R. Walczak et al., Eur. J. Nucl. Med. Mol. Imaging 43, S200 (2016), https://doi.org/10.1007/s00259-016-3484-4

W. Wojdowska, D. Pawlak, I. Cieszykowska, M. Zoltowska, T. Janiak, T. Barcikowski, J. Parus, R. Mikolajczak, J. Label. Compd. Radiopharm. 62, S572 (2019), https://doi.org/10.1002/jlcr.3725

P.G. Thirolf, C. Lang, K. Parodi, Acta Phys. Pol. A 127, 1441 (2015), https://doi.org/10.12693/APhysPolA.127.1441

J.L. Conradie, P.J. Celliers, J.G. de Villiers et al., in: Proc. 18th Int. Conf. on Cyclotrons and Their Applications (Cyclotrons 2007), Giardini-Naxos (Italy), 2007, p. 140, https://proceedings.jacow.org/c07/PAPERS/140.pdf

J.L. Conradie, J.K. Abraham, H. Anderson et al., in: Proc. 22nd Int. Conf. Cyclotrons and Their Applications (Cyclotrons 2019), Cape Town, South Africa, 2019, p. 17, https://doi.org/10.18429/JACoW-Cyclotrons2019-MOB02

R.F. Fantoni, E. Gadioli, P. Guazzoni, P. Vergani, L. Zetta, P.L. Dellera, F. Tomasi, V. Campagna, G. Ciavola, C. Marchetta, Appl. Radiat. Isot. 45, 325 (1994), https://doi.org/10.1016/0969-8043(94)90046-9

F. Szelecsényi, G.F. Steyn, Z. Kovács, C. Vermeulen, N.P. van der Meulen, S.G. Dolley, T.N. van der Walt, K. Suzuki, K. Mukai, Nucl. Instrum. Methods Phys. Res. B 240, 625 (2005), https://doi.org/10.1016/j.nimb.2005.05.057

Korea Atomic Energy Research Institute (KAERI), Cyclotron Facility, 2025 (accessed: Oct. 2025), https://www.kaeri.re.kr/artie/board?menuId=MENU00873

F. Haddad, J. Barbet, J.-F. Chatal, Curr. Radiopharm. 4, 186 (2011), https://doi.org/10.2174/1874471011104030186

F. Poirier, S. Girault, S. Auduc, F. Gomez, C. Huet, E. Mace, L. Lamouric, in: Proc. 3rd Int. Particle Accelerator Conf. (IPAC 2012), New Orleans (LA), 2012, p. 418, https://proceedings.jacow.org/IPAC2012/papers/moppd024.pdf

International Atomic Energy Agency (IAEA), EXFOR: Experimental Nuclear Reaction Data Library, 2025 (accessed: Oct. 2025), https://www-nds.iaea.org/exfor/

A.J. Koning, D. Rochman, N. Schunck, J.-C. Sublet, N. Dzysiuk, M. Fleming, S.C. van der Marck, Eur. Phys. J. A 59, 103 (2023), https://doi.org/10.1140/epja/s10050-023-01034-3

M. Herman, R. Capote, B.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007), https://doi.org/10.1016/j.nds.2007.11.003