Fragmentation Measurements for Particle Therapy with the FOOT Experiment

Main Article Content

A.C. Kraan (on Behalf of the FOOT Collaboration)

Abstract

FOOT (FragmentatiOn Of Target) is an innovative experiment in applied nuclear physics, dedicated to the understanding of nuclear fragmentation processes. This is relevant in oncological treatments with hadron beams and in the field of radiation protection in space. The FOOT physics program foresees a set of measurements conducted in both direct and inverse kinematics, employing particle beams and targets relevant to particle therapy and radiation protection in space. The main goal of the experiment is to measure double differential cross sections as a function of scattering angle and fragment energy within the  100–800 MeV/u  range, achieving a precision level exceeding 5%. Currently, the FOOT collaboration has developed two experimental setups, i.e., one based on nuclear emulsions,  designed  for  charges  Z ≥ 3, and another based on electronic  detectors,  for  fragments  with  ≤ 2.  In  this contribution, we first discuss the physical motivations of the experiment, followed by an overview of the apparatus. Then, some preliminary and recent results are presented, highlighting a few specific issues, such as charge identification, recent results with helium beams, and recent cross-section measurements. Finally, the upcoming experimental campaigns will be discussed. 
 

Article Details

How to Cite
[1]
A. Kraan, “Fragmentation Measurements for Particle Therapy with the FOOT Experiment”, Acta Phys. Pol. A, vol. 148, no. 6, p. S145, Jan. 2026, doi: 10.12693/APhysPolA.148.S145.
Section
Special segment

References

J.S. Loeffler, M. Durante, Nat. Rev. Clin. Oncol. 10, 411 (2013), https://doi.org/10.1038/nrclinonc.2013.79

H. Tsujii, T. Kamada, T. Shirai, K. Noda, H. Tsuji, K. Karasawa, Carbon-Ion Radiotherapy Principles, Practices, and Treatment Planning, Springer, Tokyo 2014, https://doi.org/10.1007/978-4-431-54457-9

M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016), https://doi.org/10.1088/0034-4885/79/9/096702

A. Mairani, S. Mein, E. Blakely et al., Phys. Med. Biol. 67, 15TR02 (2022), https://doi.org/10.1088/1361-6560/ac65d3

O. Mohamad, J.B. Sishc, J. Saha, A. Pompos, A. Rahimi, M.D. Story, A.J. Davis, D.W.N. Kim, Cancers 9, 66 (2017), https://doi.org/10.3390/cancers9060066

A.C. Kraan, A. Del Guerra, IEEE Trans. Radiat. Plasma Med. Sci. 8, 453 (2024), https://doi.org/10.1109/TRPMS.2024.3372189

F. Tommasino, M. Durante, Cancers 7, 353 (2015), https://doi.org/10.3390/cancers7010353

S. Mein, I. Dokic, C. Klein et al., Radiat. Oncol. 14, 123 (2019), https://doi.org/10.1186/s13014-019-1295-z

B. Jones, T.S. Underwood, R.G. Dale, Br. J. Radiol. 84, S61 (2011), https://doi.org/10.1259/bjr/36792876

S. Muraro, G. Battistoni, A.C. Kraan, Front. Phys. Sec. Med. Phys. Imaging 8, 567800 (2020), https://doi.org/10.3389/fphy.2020.567800

J. W. Norbury, G. Battistoni, J. Besuglow et al., Front. Phys. Sec. Med. Phys. Imaging 8, 565954 (2020), https://doi.org/10.3389/fphy.2020.565954

F. Luoni, F. Horst, C.A. Reidel et al., New J. Phys. 23, 101201 (2021), https://doi.org/10.1088/1367-2630/ac27e1

G. Battistoni, M. Toppi, V. Patera et al., Front. Phys. 8, 555 (2021), https://doi.org/10.3389/fphy.2020.568242

G. Galati, V. Boccia, A. Alexandrov et al., Front. Phys. 11, 1327202 (2024), https://doi.org/10.3389/fphy.2023.1327202

G. Traini, A. Alexandrov, B. Alpat, Il Nuovo Cimento 43C, 16 (2020), https://doi.org/10.1393/ncc/i2020-20016-5

Y. Dong, S. Gianluigi, C. Sofia et al., Nucl. Instrum. Methods Phys. Res. A 986, 164756 (2021), https://doi.org/10.1016/j.nima.2020.164756

A. Trigilio, L. Sabbatini, B. Alpat et al., J. Instum. 20, T09010 (2025), https://doi.org/10.1088/1748-0221/20/09/T09010

G. Silvestre, FOOT Collaboration, Nucl. Instrum. Methods Phys. Res. A 1047, 167717 (2023), https://doi.org/10.1016/j.nima.2022.167717

M. Morrocchi, E. Ciarrocchi, A. Alexandrov et al., Nucl. Instrum. Methods Phys. Res. A 916, 116 (2019), https://doi.org/10.1016/j.nima.2018.09.086

A.C. Kraan, R. Zarrella, A. Alexandrov et al., Nucl. Instrum. Methods Phys. Res. A 1001, 165206 (2021), https://doi.org/10.1016/j.nima.2021.165206

N. Bartosik, F. Cavanna, L. Ramello et al, J. Instrum. 20, P03021 (2025), https://doi.org/10.1088/1748-0221/20/03/P03021

S. Biondi, IEEE Trans. Nucl. Sci. 68, 2464 (2021), https://doi.org/10.1109/TNS.2021.3084309

Lorenzo Pierfederici, M.Sc. Thesis, University of Pisa, 2025

R. Ridolfi, M. Toppi, A. Mengarelli et al., Phys. Rev. C 112, 014610 (2025), https://doi.org/10.1103/nmw9-ldrm