β+ Radioactive Nuclei Created During Proton Therapy

Main Article Content

I. Skwira-Chalot
P. Sękowski
A. Taranienko
A. Spyra
T. Matulewicz
J. Swakoń
J. Matulewicz

Abstract

During proton therapy, the beam flux decreases due to inelastic interactions with nuclei. At the highest energies used in proton therapy, around 20% protons initiate nuclear reactions. This report presents the cross-section measurements of proton-induced production of three β+ emitters — 11C, 13N, 15O — with half-lives between 2 and 20 min, using solid C, BN, and SiO2 targets. Stacks of up to 15 targets were irradiated simultaneously with proton beams of kinetic energy below 58 MeV at the AIC-144 cyclotron of the Institute of Nuclear Physics, Polish Academy of Sciences. The measured cross sections follow the excitation function obtained in the previous experiments, with uncertainty of a few percent. 
 

Article Details

How to Cite
[1]
I. Skwira-Chalot, “β+ Radioactive Nuclei Created During Proton Therapy”, Acta Phys. Pol. A, vol. 148, no. 6, p. S128, Jan. 2026, doi: 10.12693/APhysPolA.148.S128.
Section
Special segment

References

M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016), https://doi.org/10.1088/0034-4885/79/9/096702

W.D. Newhauser, R. Zhang, Phys. Med. Biol. 60, R155 (2015), https://doi.org/10.1088/0031-9155/60/8/R155

H. Woodard, D. White, Br. J. Radiol. 59, 1209 (1986), https://doi.org/10.1259/0007-1285-59-708-1209

P. Sękowski, G. Saworska, I. Skwira-Chalot, A. Spyra, W. Szcześniak, T. Matulewicz, T. Horwacik, J. Swakoń, Nucl. Instrum. Methods Phys. Res. A 1040, 167 (2012), https://doi.org/10.1016/j.nima.2022.167292

J. Matulewicz, I. Skwira-Chalot, P. Sękowski et al., Acta Phys. Pol. B Proc. Suppl. 17, A37 (2024), https://doi.org/10.5506/APhysPolBSupp.17.3-A37

J. Matulewicz, I. Skwira-Chalot, S. Kusyk et al., Eur. Phys. J. A 60, 203 (2024), https://doi.org/10.1140/epja/s10050-024-01420-5

D. Boscolo, G. Lovatti, O. Sokol et al., Nat. Phys. 21, 1648 (2025), https://doi.org/10.1038/s41567-025-02993-8

J.F. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010), https://doi.org/10.1016/j.nimb.2010.02.091

T. Matulewicz, P. Sękowski, I. Skwira-Chalot, J. Tarasiuk, Acta Phys. Pol. B 51, 1939 (2020), https://doi.org/10.5506/APhysPolB.51.1939

F. Horst, W. Adi, G. Aricó et al., Phys. Med. Biol. 64, 205012 (2019), https://doi.org/10.1088/1361-6560/ab4511

L. Valentin, Nucl. Phys. 62, 81 (1965), https://doi.org/10.1016/0029-5582(65)90072-6

I. Skwira-Chalot, P. Sękowski, J. Matulewicz et al., AIP Conf. Proc. 3054, 040006 (2024), https://doi.org/10.1063/5.0187428

T. Masuda, J. Kataoka, M. Arimoto et al., Sci Rep. 8, 2570 (2018), https://doi.org/10.1038/s41598-018-20906-z

T. Rodríguez-González, C. Guerrero, C.M. Bäcker et al., Nucl. Data Sheets 187, 579 (2023), https://doi.org/10.1016/j.nds.2023.01.004

P. Sękowski, I. Skwira-Chalot, T. Matulewicz, Acta Phys. Pol. B 49, 681 (2018), https://doi.org/10.5506/APhysPolB.49.681