Towards Charge Conjugation Symmetry Test in Electromagnetic Interaction Using J-PET

Main Article Content

P. Tanty
E. Pérez del Rio
P. Moskal

Abstract

Charge conjugation symmetry (C-symmetry) is well-known to be maximally violated in weak interactions. However, its conservation is yet to be tested in electromagnetic and strong interactions. With the aim to test this symmetry in electromagnetic interactions, the forbidden decay channel of the triplet positronium state — the ortho-positronium — shall be explored. The C-symmetry forbids this state from decaying into anything other than an odd number of photons; henceforth, a search for four-photon decay extends the feasibility of testing the C-symmetry  in  electromagnetic  interaction  using the J-PET detector. Furthermore, the bosonic nature of photons hints at a distinct configuration in the event of a C-symmetry violation. Known for its outstanding timing and angular resolution, J-PET offers a viable and substantial platform to perform this symmetry test. In this article, the motivation behind the study, the theoretical assumptions, and recent advancements in testing C-symmetry using J-PET shall be discussed.

Article Details

How to Cite
[1]
P. Tanty, E. Pérez del Rio, and P. Moskal, “Towards Charge Conjugation Symmetry Test in Electromagnetic Interaction Using J-PET”, Acta Phys. Pol. A, vol. 148, no. 6, p. S124, Jan. 2026, doi: 10.12693/APhysPolA.148.S124.
Section
Special segment

References

F. Tayefi Ardebili, S. Niedźwiecki, P. Moskal, Bio-Algorithms Med-Syst. 19, 132 (2023), https://doi.org/10.5604/01.3001.0054.1973

S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95, 021002 (2023), https://doi.org/10.1103/RevModPhys.95.021002

P.A. Vetter, S.J. Freedman, Phys. Rev. A 66, 052505 (2002), https://doi.org/10.1103/PhysRevA.66.052505

Particle data group online (accessed 2025), https://pdglive.lbl.gov/Viewer.action

S.D. Bass, Acta Phys. Pol. B 50, 1319 (2019), https://doi.org/10.5506/APhysPolB.50.1319

Marko, A. Rich, Phys. Rev. Lett. 33, 980 (1974), https://doi.org/10.1103/PhysRevLett.33.980

E. Pérez del Río, W. Krzemień, B. Kłósek et al., Acta Phys. Pol. A 142, 382 (2022), https://doi.org/10.12693/APhysPolA.142.386

H.S. Mani, A. Rich, Phys. Rev. D 4, 122 (1971), https://doi.org/10.1103/PhysRevD.4.122

P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, eadp2840 (2024), https://doi.org/10.1126/sciadv.adp2840

F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 1 (2024), https://doi.org/10.5604/01.3001.0054.8095

P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273

P. Moskal, E.Ł. Stępień, PET Clin. 15, 439 (2020), https://doi.org/10.1016/j.cpet.2020.06.009

G. Korcyl, P. Białas, C. Curceanu et al., IEEE Trans. Med. Image. 37, 2526 (2018), https://doi.org/10.1109/TMI.2018.2837741

P. Moskal, D. Kumar, S. Sharma et al., Sci. Adv. 11, 18, (2025), https://doi.org/10.1126/sciadv.ads3046

P. Moskal, D. Alfs, T. Bednarski et al., Acta Phys. Pol. B 47, 509 (2016), https://doi.org/10.5506/APhysPolB.47.509

P. Moskal, A. Gajos, M. Mohammed et al., Nat. Commun. 12, 5658 (2021), https://doi.org/10.1038/s41467-021-25905-9

P. Moskal, K. Dulski, N. Chug et al., Sci. Adv. 7, 4394 (2021), https://doi.org/10.1126/sciadv.abh4394

P. Moskal, E. Czerwiński, J. Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6

S. Sharma, J. Chhokar, C. Curceanu et al., EJNMMI Phys. 7, 39 (2020), https://doi.org/10.1186/s40658-020-00306-x

B. Jasińska, M. Gorgola, M. Wiertel et al., Acta Phys. Pol. B 47, 453 (2016), https://doi.org/10.5506/APhysPolB.47.453

M. Gorgol, B. Jasińska, M. Kosior, E. Stępień, Acta Phys. Pol. B 51, 293 (2020), https://doi.org/10.5506/APhysPolB.51.293

M. Das, W. Mryka, E.Y. Beyene et al., Bio-Algorithms Med-Syst. 19, 87 (2023), https://doi.org/10.5604/01.3001.0054.1938