Developing Analysis Criteria for Charge–Parity Symmetry Studies Using Photons From Ortho-Positronium Annihilation and Compton Scattering
Main Article Content
Abstract
The main aim of this research is to test the charge–parity discrete symmetry in the ortho-positronium (o-Ps) atom decay using the modular Jagiellonian positron emission tomography (J-PET) detector. The J-PET is distinguished by its ability to determine the polarization plane of photons emitted during positronium annihilation. The J-PET detector can investigate discrete symmetry by examining the non-zero expectation values of the symmetry-odd operators constructed from the momentum and direction of polarization plane of gamma (γ) quanta coming from o-Ps annihilation. In positronium decay, the photon–photon interactions in the final state due to vacuum polarization may mimic a charge–parity symmetry violation at the level of 10-9, according to the Standard Model prediction. Currently, with the help of the 192-strip J-PET detector, the experimental limits on charge–parity symmetry violation in o-Ps decay are set at a precision value of 0.0005 ± 0.0007. Using the modular J-PET detector, we aim to improve this value by at least an order of magnitude. This article focuses on developing analysis criteria towards improving the sensitivity level for charge–parity-discrete symmetry studies in o-Ps decay using the modular J-PET detector.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Moskal, D. Alfs, T. Bednarski et al., Acta Phys. Pol. B 47, 509 (2016), https://doi.org/10.5506/APhysPolB.47.509
P. Moskal, D. Kumar, S. Sharma et al., Sci. Adv. 11, 18 (2025), https://doi.org/10.1126/sciadv.ads3046
S. Bass, Acta Phys. Polon. B 50, 1319 (2019), https://doi.org/10.5506/APhysPolB.50.1319
P. Moskal, E. Czerwiński, J. Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6
P. Moskal, A. Gajos, M. Mohammed et al., Nat. Commun. 12, 5658 (2021), https://doi.org/10.1038/s41467-021-25905-9
K.V. Eliyan, M. Skurzok, P. Moskal Acta Phys. Pol. B 15, A10 (2022), https://doi.org/10.5506/APhysPolBSupp.15.4-A10
K.V. Eliyan, M. Skurzok, P. Moskal Acta Phys. Pol. B 17, A3 (2024), https://doi.org/10.5506/APhysPolBSupp.17.7-A3
P. Moskal, N. Krawczyk, B.C. Hiesmayr et al., Eur. Phys J. C 78, 970 (2018), https://doi.org/10.1140/epjc/s10052-018-6461-1
W. Bernreuther, U. Löw, J.P. Ma, O. Nachtmann, Phys. C Part. Fields 41, 143 (1988), https://doi.org/10.1007/BF01412589
B.K. Arbic, S. Hatamian, M. Skalsey, J. Van House, W. Zheng, Phys. Rev. A 37, 3189 (1988), https://doi.org/10.1103/PhysRevA.37.3189
T. Yamazaki, T. Namba, S. Asai, T. Kobayashi, Phys. Rev. Lett. 104, 083401 (2010), https://doi.org/10.1103/PhysRevLett.104.083401
S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95, 021002 (2023), https://doi.org/10.1103/RevModPhys.95.021002
S. Niedzwiecki, P. Białas, C. Curceanu et al., Acta Phys. Pol. B 48, 1567 (2017), https://doi.org/10.5506/APhysPolB.48.1567
P. Moskal, S. Niedźwiecki, T. Bednarski et al., Nucl. Instrum. Methods Phys. Res. A 764, 317 (2014), https://doi.org/10.1016/j.nima.2014.07.052
P. Moskal, E. Stępień, PET Clin. 15, 439 (2020), https://doi.org/10.1016/j.cpet.2020.06.009
P. Moskal, T. Bednarski S. Niedźwiecki et al., IEEE Trans. Instrum. Meas. 70, 2000810 (2021), https://doi.org/10.1109/TIM.2020.3018515
P. Moskal, P. Kowalski, R.Y. Shopa et al., Phys. Med. Biol. 66, 175015 (2021), https://doi.org/10.1088/1361-6560/ac16bd
A. Porcelli, K.V. Eliyan, G. Moskal et al., Universe 11, 180 (2025), https://doi.org/10.3390/universe11060180
T. Kaplanoglu, P. Moskal, Bio-Algorithms Med-Syst. 19, 109 (2023), https://doi.org/10.5604/01.3001.0054.1941
F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 19, 132 (2023), https://doi.org/10.5604/01.3001.0054.8095
P. Moskal, E.Ł. Stepien, Bio-Algorithms Med-Syst. 17, 311 (2021), https://doi.org/10.1515/bams-2021-0204
M. Kozani, A. Rucinski, P. Moskal, Bio-Algorithms Med-Syst. 19, 23 (2023), https://doi.org/10.5604/01.3001.0054.1819
Ł. Kapłon, G. Moskal, Bio-Algorithms Med-Syst. 17, 191 (2021), https://doi.org/10.1515/bams-2021-0088
Ł. Kapłon, IEEE Trans. Nucl. Sci. 67, 2286 (2020), https://doi.org/10.1109/TNS.2020.3012043
A. Gajos, Symmetry 12, 1268 (2020), https://doi.org/10.3390/sym12081268
E. Czerwiński, J. Raj, J-PET Collaboration EPJ Web Conf. 262, 01009 (2022), https://doi.org/10.1051/epjconf/202226201009
F. Tayefi Ardebili, P. Moskal, Bio-Algorithms Med-Syst. 20, 9 (2024), https://doi.org/10.5604/01.3001.0054.8095
P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, 37 (2024), https://doi.org/10.1126/sciadv.adp2840