Two-Exponential Decay of Acridine Orange
Main Article Content
Abstract
In this work, we experimentally study the fluorescence decay of acridine orange at late times to test whether late-time power-law behaviour emerges — a feature expected to be very small but consistent with quantum mechanical and quantum field theoretical predictions. Using two distinct photon detectors, we find that the data are well described by the sum of two exponential functions with lifetimes τ1 = 1.7331 ± 0.001 ns and τ2 = 5.948 ± 0.012 ns, in agreement with values reported in the literature. Although no deviation from the exponential decay law is observed, this study serves as a reliable test of the experimental setup and enables a precise determination of the sample lifetimes.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978), https://doi.org/10.1088/0034-4885/41/4/003
B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977), https://doi.org/10.1063/1.523304
L.S. Schulman, Phys. Rev. A 57, 1509 (1998), https://doi.org/10.1103/PhysRevA.57.1509
P. Facchi, S. Pascazio, J. Phys. A 41, 493001 (2008), https://doi.org/10.1088/1751-8113/41/49/493001
C. Balzer, T. Hannemann, D. Reiß, C. Wunderlich, W. Neuhauser, P.E. Toschek, Opt. Commun. 211, 235 (2002), https://doi.org/10.1016/S0030-4018(02)01859-X
A.G. Kofman, G. Kurizki, Nature 405, 546 (2000), https://doi.org/10.1038/35014537
L.A. Khalfin, Doklady Akad. Nauk SSSR 115, 277 (1957)
D.A. Dicus, W.W. Repko, R.F. Schwitters, T.M. Tinsley, Phys. Rev. A 65, 032116 (2002), https://doi.org/10.1103/PhysRevA.65.032116
K. Urbanowski, Phys. Rev. A 50, 2847 (1994), https://doi.org/10.1103/PhysRevA.50.2847
F. Giacosa, Found. Phys. 42, 1262 (2012), https://doi.org/10.1007/s10701-012-9667-3
F. Giacosa, G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011), https://doi.org/10.1142/S021773231103670X
F. Giacosa, Phys. Lett. B 831, 137200 (2022), https://doi.org/10.1016/j.physletb.2022.137200
P. Facchi, S. Pascazio, Chaos Solitons Fractals 12, 2777 (2001), https://doi.org/10.1016/S0960-0779(01)00090-X
P. Facchi, S. Pascazio, Phys. Lett. A 241, 139 (1998), https://doi.org/10.1016/S0375-9601(98)00144-3
F. Giacosa, K. Kyzioł, Acta Phys. Pol. A 146, 704 (2024), https://doi.org/10.12693/aphyspola.146.704
S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997), https://doi.org/10.1038/42418
M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001), https://doi.org/10.1103/PhysRevLett.87.040402
A. Crespi, F.V. Pepe, P. Facchi, F. Sciarrino, P. Mataloni, H. Nakazato, S. Pascazio, R. Osellame, Phys. Rev. Lett. 122, 130401 (2019), https://doi.org/10.1103/PhysRevLett.122.130401
S. Schael, ALEPH Collaboration, R. Barate, R. Bruneliére et al., Phys. Rept. 421, 191 (2005), https://doi.org/10.1016/j.physrep.2005.06.007
C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 96, 163601 (2006), https://doi.org/10.1103/PhysRevLett.96.163601
J. Lakowicz, Principles of Fluorescence Spectroscopy, Vol. 1, Springer, 2006, https://doi.org/10.1007/978-0-387-46312-4
F. Giacosa, A. Kolbus, K. Kyziol, M. Plodowska, M. Piotrowska, K. Szary, A. Vereijken, (2025), https://arxiv.org/abs/2509.17163
T. Ban, K. Kasatani, M. Kawasaki, H. Sato, Photochem. Photobiol. 37, 131 (1983), https://doi.org/10.1111/j.1751-1097.1983.tb04448.x
N. Miyoshi, K. Hara, I. Yokoyama, G. Tomita, M. Fukuda, Photochem Photobiol. 685} 8 (1988), https://doi.org/10.1111/j.1751-1097.1988.tb02765.x
S. Georghiou, Photochem Photobiol. 22, 103 (1975), https://doi.org/10.1111/j.1751-1097.1975.tb08820.x
Y. Kubota, R.F. Steiner, Biophysical Chemistry 6, 279 (1977), https://doi.org/10.1016/0301-4622(77)85009-6
G. Cowan, Statistical Data Analysis, Oxford University Press, 2023, https://doi.org/10.1093/oso/9780198501565.001.0001