Classification of Signal Events for Entanglement Studies with J-PET Using Machine Learning Techniques
Main Article Content
Abstract
Understanding the entangled polarization of photons produced in positron–electron annihilation remains experimentally challenging. Recently, it has been proposed to utilize this correlation in positron emission tomography imaging to suppress the random background and as a diagnostic parameter. Conventional positron emission tomographs rely on the registration of the two annihilation photons from positron annihilation. However, measuring polarization correlations requires scattering of annihilation photons in the detector volume and the registration of their corresponding scatters. Such a 4-hit event topology inherently suffers from low efficiency and high background. Therefore, translating this quantum information into medical imaging requires a method to overcome the inherent limitations of conventional geometric cuts. We present a machine learning classification framework trained on simulated detector events. This approach enables a high-purity separation of polarization-correlated signal from background and simultaneously achieves a significant improvement in computational efficiency.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Moskal, Physics 17, 138 (2024), https://doi.org/10.1103/PHYSICS.17.138
P. Moskal, in: Proc. 2018 IEEE Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC 2018), https://doi.org/10.1109/NSSMIC.2018.8824622, IEEE, 2018
S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95, 021002 (2023), https://doi.org/10.1103/RevModPhys.95.021002
I. Tkachev, S. Musin, D. Abdurashitov, A. Baranov, F. Guber, A. Ivashkin, A. Strizhak, Sci. Rep. 15, 6064 (2025), https://doi.org/10.1038/s41598-025-87095-4
G.R. Romanchek, G. Shoop, M.A. Kupinski, P.H. Kuo, M. King, L.R. Furenlid, S. Abbaszadeh, Bio-Algorithms Med-Syst. 20, 27 (2024), https://doi.org/10.5604/01.3001.0054.9079
P. Caradonna, Ann. Phys. 470, 169779 (2024), https://doi.org/10.1016/J.AOP.2024.169779
G. Romanchek, G. Shoop, S. Abbaszadeh, Bio-Algorithms Med-Syst. 19, 9 (2023), https://doi.org/10.5604/01.3001.0054.1817
S. Parashari, D. Bosnar, I. Friščić, A.M. Kožuljević, Z. Kuncic, P. Žugec, M. Makek, Phys. Lett. B 852, 138628 (2024), https://doi.org/10.1016/J.PHYSLETB.2024.138628
D. Kim, A.N. Rachman, U. Taisei, M. Uenomachi, K. Shimazoe, H. Takahashi, J. Instrum. 18, P07007 (2023), https://doi.org/10.1088/1748-0221/18/07/P07007
P. Moskal, D. Kumar, S. Sharma et al., Sci. Adv 11, 3046 (2025), https://doi.org/10.1126/sciadv.ads3046
A. Ivashkin, D. Abdurashitov, A. Baranov, F. Guber, S. Morozov, S. Musin, A. Strizhak, I. Tkachev, Sci. Rep. 13, 7559 (2023), https://doi.org/10.1038/s41598-023-34767-8
D.P. Watts, J. Bordes, J.R. Brown, A. Cherlin, R. Newton, J. Allison, M. Bashkanov, N. Efthimiou, N.A. Zachariou, Nat. Commun. 12, 2646 (2021), https://doi.org/10.1038/s41467-021-22907-5
D. Abdurashitov, A. Baranov, D. Borisenko et al., J. Instrum. 17, P03010 (2022), https://doi.org/10.1088/1748-0221/17/03/p03010
S. Sharma, D. Kumar, P. Moskal, Acta Phys. Pol. A 142, 428 (2022), https://doi.org/10.12693/APHYSPOLA.142.428
P. Caradonna, K. Shimazoe, Phys. Rev. A 112, 032413 (2025), https://doi.org/10.1103/j7p7-ckp9
P. Caradonna, I. D'amico, D.G. Jenkins, D.P. Watts, Phys. Rev. A 109, 033719 (2024), https://doi.org/10.1103/PhysRevA.109.033719
P. Knights, F. Ryburn, G. Tungate, K. Nikolopoulos, Eur. J. Phys. 39, 025203 (2018), https://doi.org/10.1088/1361-6404/AA9C98
G. Romanchek, G. Shoop, K. Gholami, E. Enlow, S. Abbaszadeh, IEEE Trans. Radiat. Plasma Med. Sci. 8, 916 (2024), https://doi.org/10.1109/TRPMS.2024.3388872
A.M. Kožuljević, T. Bokulić, D. Grošev, S. Parashari, L. Pavelić, M. Rade, M. Marijaň, Z. Zuvić, M. Makek, (2025), https://arxiv.org/abs/2510.11504
C.S. Wu, I. Shaknov, Phys. Rev. 77, 136 (1950), https://doi.org/10.1103/PhysRev.77.136
A. Alavi, T. J. Werner, E. Stępień, P. Moskal, Bio-Algorithms Med-Syst. 17, 203 (2021), https://doi.org/10.1515/bams-2021-0186
O. Klein, T. Nishina, Z. Phys. 52, 853 (1929), https://doi.org/10.1007/BF01366453
P. Moskal, A. Gajos, M. Mohammed et al., Nat. Commun. 12, 5658 (2021), https://doi.org/10.1038/s41467-021-25905-9
P. Moskal, K. Dulski, N. Chug et al., Sci. Adv. 7, 4394 (2021), https://doi.org/10.1126/SCIADV.ABH4394
P. Moskal, E. Czerwiński, J. Raj et al., Nat. Commun. 15, 78 (2024), https://doi.org/10.1038/s41467-023-44340-6
P. Moskal, J. Baran, S. Bass et al., Sci. Adv. 10, 2840 (2024), https://doi.org/10.1126/SCIADV.ADP2840
P. Moskal, D. Alfs, T. Bednarski et al., Acta Phys. Pol. B 47, 509 (2016), https://doi.org/10.5506/APHYSPOLB.47.509
P. Moskal, E. Stępień, A. Khreptak, Bio-Algorithms Med-Syst. 20, 55 (2024), https://doi.org/10.5604/01.3001.0054.9273
P. Moskal, E. Stępień, PET Clin. 15, 439 (2020), https://doi.org/10.1016/J.CPET.2020.06.009
S. Niedźwiecki, P. Białas, C. Curceanu et al., Acta Phys. Pol. B 48, 1567 (2017), https://doi.org/10.5506/APhysPolB.48.1567
P. Moskal, O. Rundel, D. Alfs et al., Phys. Med. Biol. 61, 2025 (2016), https://doi.org/10.1088/0031-9155/61/5/2025
D. Kumar, S. Sharma, P. Moskal, J. Phys. Conf. Ser. 3029, 012006 (2025), https://doi.org/10.1088/1742-6596/3029/1/012006
P. Baldi, P. Sadowski, D. Whiteson, Nat. Commun. 5, 4308 (2014), https://doi.org/10.1038/ncomms5308
F. Pedregosa, V. Michel, O. Grisel et al., J. Mach. Learn. Res. 12, 2825 (2011)]
W. McKinney, in: Proc. of the 9th Python in Science Conf., 2010, https://doi.org/10.25080/majora-92bf1922-00a
T. Chen, C. Guestrin, in: Proc. of the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2016, p. 785, https://doi.org/10.1145/2939672.2939785
J.H. Friedman, Ann. Statist. 29, 1189 (2001), https://doi.org/10.1214/AOS/1013203451
L. Breiman, Mach. Learn. 45, 5 (2001), https://doi.org/10.1023/A:1010933404324
D.W. Hosmer, S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression, 3rd ed., John Wiley & Sons 2013, , https://doi.org/10.1002/9781118548387
I. Goodfellow, Y. Bengio, A. Courville, J. Heaton, Genet. Program. Evol. Mach. 19, 305 (2017), https://doi.org/10.1007/S10710-017-9314-Z
T. Fawcett, Pattern Recognit. Lett. 27, 861 (2006), https://doi.org/10.1016/J.PATREC.2005.10.010
D. Kumar, S. Sharma, P. Moskal, Proc. Sci. 449, 564 (2024), https://doi.org/10.22323/1.449.0564