Carbon Ion Implantation Effects on Morphology, Bandgap, and Urbach Tailing in ZnO Thin Films

Main Article Content

K. Suchanek
K. Wojtasik
O. Łoś
M. Mitura-Nowak
S. Kąc

Abstract

Zinc oxide (ZnO) is a wide-bandgap semiconductor with diverse applications in optoelectronics and sensing. In this study, we examine how 20 keV C+ ion implantation affects the morphology and optical properties of ZnO thin films. Using atomic force microscopy and ultraviolet-visible spectroscopy, we observe that ion implantation leads to a reduction in grain size, increased morphological disorder, and a fluence-dependent increase in both the optical bandgap and Urbach energy. Simulations using the Transport of Ions in Matter code indicate that implanted ions penetrate the ZnO layer to an average depth of around 41 nm, generating near-surface structural damage. Post-implantation annealing at 500°C partially restores the optical properties, indicating some level of defect recovery. These findings demonstrate that low-energy carbon ion implantation enables controlled tuning of the properties of ZnO thin film without structural degradation.


 

Article Details

How to Cite
[1]
K. Suchanek, K. Wojtasik, O. Łoś, M. Mitura-Nowak, and S. Kąc, “Carbon Ion Implantation Effects on Morphology, Bandgap, and Urbach Tailing in ZnO Thin Films”, Acta Phys. Pol. A, vol. 148, no. 2, p. 89, Sep. 2025, doi: 10.12693/APhysPolA.148.89.
Section
Regular segment

References

M. Gartner, H. Stroescu, D. Mitrea, M. Nicolescu, Molecules 28, 4674 (2023), https://doi.org/10.3390/molecules28124674

J. Theerthagiri, S. Salla, R.A. Senthil et al., Nanotechnology 30, 392001 (2019), https://doi.org/10.1088/1361-6528/ab268a

F. Rahman, Opt. Eng. 58, 010901 (2019), https://doi.org/10.1117/1.OE.58.1.010901

S.J. Pearton, F. Ren, Curr. Opin. Chem. Eng. 3, 51 (2014), https://doi.org/10.1016/j.coche.2013.11.002

Y. Ning, Z. Zhang, F. Teng, X. Fang, Small 14, 1703754 (2018), https://doi.org/10.1002/smll.201703754

S.-J. Young, Y.-H. Liu, M.D.N.I. Shiblee et. al., ACS Appl. Electron. Mater. 2, 3522 (2020), https://doi.org/10.1021/acsaelm.0c00556

L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, Z.L. Wang, Adv. Sci. 4, 1600185 (2016), https://doi.org/10.1002/advs.201600185

H. Yuan, S.A.A.A. Aljneibi, J. Yuan et. al., Adv. Mater. 31, 1807161 (2019), https://doi.org/10.1002/adma.201807161

W. Oum, A. Mirzaei, K.Y. Shin, E.B. Kim, S. Moon, S.S. Kim, H.W. Kim, Sens. Actuators B Chem. 435, 137615 (2025), https://doi.org/10.1016/j.snb.2025.137615

M. Boutamine, Y. Bakha, H. Saidani, H. Hachemi, A.D. Guerfi, C. Sabba, S. Aberkane, H. Khales, A. Bella, Acta Phys. Pol. A 145, 225 (2024), https://doi.org/10.1016/j.snb.2017.12.052

I. Khan, A.A.M. Ibrahim, M. Sohail, A. Qurashi, Ultrason. Sonochem. 37, 669 (2017), https://doi.org/10.1016/j.ultsonch.2017.02.029

V. Karpyna, Acta Phys. Pol. A 142, 644 (2022), https://doi.org/10.12693/APhysPolA.142.644

K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016), https://doi.org/10.1016/j.watres.2015.09.045

V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N.A. Shah, M. Tiwari, Front. Microbiol. 9, 1218 (2018), https://doi.org/10.3389/fmicb.2018.01218

S. Stankic, S. Suman, F. Haque, J. Vidic, J. Nanobiotechnol. 14, 73 (2016), https://doi.org/10.1186/s12951-016-0225-6

K. Rahmanifarah, M. Mahmoudian, S.M. Eskandarabadi, Sci. Rep. 15, 3623 (2025), https://doi.org/10.1038/s41598-025-88008-1

I. Kim, K. Viswanathan, G. Kasi, S. Thanakkasaranee, K. Sadeghi, J. Seo, Food Rev. Int. 38, 537 (2022), https://doi.org/10.1080/87559129.2020.1737709

A. Das, D. Basak, ACS Appl. Electron. Mater. 3, 3693 (2021), https://doi.org/10.1021/acsaelm.1c00393

S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004), https://doi.org/10.1116/1.1714985

S. Pal, A. Das, D. Basak, J. Appl. Phys. 135, 145105 (2024), https://doi.org/10.1063/5.0190066

F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224 (2014), https://doi.org/10.1039/C4NR01887G

J. Wang, R. Chen, L. Xiang, S. Komarnenic, Ceram. Int. 44, 7357 (2018), https://doi.org/10.1016/j.ceramint.2018.02.013

J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4, 4024 (2012), https://doi.org/10.1021/am300835p

X. Bai, K. Luo, W. Cui, Z. Wang, Z. Ma, X. Wang, W. Zhang, X. Cui, Vacuum 221, 112940 (2024), https://doi.org/10.1016/j.vacuum.2023.112940

S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67, 094115 (2003), https://doi.org/10.1103/PhysRevB.67.094115

K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch, M. Hayes, Appl. Phys. Lett. 87, 191904 (2005), https://doi.org/10.1063/1.2126137

Z.Q. Chen, M. Maekawa, A. Kawasuso, S. Sakai, H. Naramoto, J. Appl. Phys. 99, 093507 (2006), https://doi.org/10.1063/1.2194113

V. Sharma, M. Prasad, S. Jadkar, S. Pal, J. Mater. Sci. Mater. Electron. 27, 12318 (2016), https://doi.org/10.1007/s10854-016-5192-z

K. Saravanan, G. Jayalakshmi, S. Chandra et al., Phys. Chem. Chem. Phys. 19, 13316 (2017), https://doi.org/10.1039/C7CP01939D

S. Zhou, Q. Xu, K. Potzger et. al., Appl. Phys. Lett. 93, 232507 (2008), https://doi.org/10.1063/1.3048076

K. Wojtasik, M. Zięba, C. Tyszkiewicz, W. Pakieła, G. Żak, O. Jeremiasz, E. Gondek, K. Drabczyk, P. Karasiński, Materials 16, 1898 (2023), https://doi.org/10.3390/ma16051898

B. Rajchel, M. Drwiega, E. Lipińska, M. Wierba, Nucl. Instrum. Methods Phys. Res. B 89, 342 (1994), https://doi.org/10.1016/0168-583X(94)95196-9

J.F. Ziegler, Srim - The stopping and range of ions in matter (Ver. SRIM-2013), http://www.srim.org/

D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005), https://doi.org/10.1103/PhysRevLett.95.225502

G.W. Egeland, J.A. Valdez, S.A. Maloy, K.J. McClellan, K.E. Sickafus, G.M. Bond, J. Nucl. Mater. 435, 77 (2013), https://doi.org/10.1016/j.jnucmat.2012.12.025

P. Potera, S. Ubizskii, D. Sugak, T. Lukasiewicz, Radiat. Meas. 42, 232 (2007), https://doi.org/10.1016/j.radmeas.2006.12.004

C. Kaiser, O.J. Sandberg, N. Zarrabi, W. Li, P. Meredith, A. Armin, Nat. Commun. 12, 3988 (2021), https://doi.org/10.1038/s41467-021-24202-9

P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018), https://doi.org/10.1021/acs.jpclett.8b02892

I.Y. Bouderbala, A. Guessoum, S. Rabhi, O. Bouhlassa, I.-E. Bouras, Appl. Phys. A 130, 205 (2024), https://doi.org/10.1007/s00339-024-07366-1

F. Urbach, Phys. Rev. 92, 1324 (1953), https://doi.org/10.1103/PhysRev.92.1324

A.F. Zatsepin, Y.A. Kuznetsova, V.I. Sokolov, J. Lumin. 183, 135 (2017), https://doi.org/10.1016/j.jlumin.2016.11.006

I.A. Vainshtein, A.F. Zatsepin, V.S. Kortov, Y.V. Shchapova, Phys. Solid State 42, 230 (2000), https://doi.org/10.1134/1.1131151