Investigation of Elastic and Thermodynamic Properties of XA2B4 (X = Mg, Zn, Cd; A = Sc, Y; B = S, Se) Spinel Compounds

Main Article Content

Z. Noor
G. Murtaza
M.A. Jehangir
A.R. Chaudhry

Abstract

Spinels have an accurate structure and composition, which allows them to exhibit excellent properties and be used in advanced applications. In this study, using density functional theory calculations, we have examined the less-explored elastic properties of spinal compounds (AB2X4). All studied compounds are in the cubic phase with a direct bandgap. The different elastic properties of spinal compounds are calculated using the elastic constant (Cij ), i.e., bulk modulus, shear modulus, anisotropy, Poisson's ratio, Cauchy's pressure, Young's modulus, and linear compressibility, etc. The results obtained using the quasiharmonic Debye model show increase in bulk modulus B, Gibbs free energy G and a decreasing trend for the entropy S, showing the thermodynamic stability of the compounds in the range of 200 to 800 K and 0 to 20 GPa.

Article Details

How to Cite
[1]
Z. Noor, G. Murtaza, M. Jehangir, and A. Chaudhry, “Investigation of Elastic and Thermodynamic Properties of XA2B4 (X = Mg, Zn, Cd; A = Sc, Y; B = S, Se) Spinel Compounds”, Acta Phys. Pol. A, vol. 148, no. 2, p. 77, Sep. 2025, doi: 10.12693/APhysPolA.148.77.
Section
Regular segment

References

F.L. Sutherland, K. Zaw, S. Meffre, G. Giuliani, A.E. Fallick, I.T. Graham, G.B. Webb, Aust. J. Earth Sci. 56, 1003 (2009), https://doi.org/10.1080/08120090903112109

K. Ounnunkad, S. Phanichphant, Mater. Res. Bull. 47, 473 (2012), https://doi.org/10.1016/j.materresbull.2011.10.012

J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E.I. Ríos, H.M. Palmer, C. Greaves, F.J. Berry, J. Mater. Chem. 11, 3087 (2001), https://doi.org/10.1039/b103135j

A. Bouhemadou, K. Haddadi, R. Khenata, D. Rached, S. Bin-Omran, Phys. B 407, 2295 (2012), https://doi.org/10.1016/j.physb.2012.03.017

A.N. Naveen, P. Manimaran, S. Selladurai, J. Mater. Sci. Mater. Electron. 26, 8988 (2015), https://doi.org/10.1007/s10854-015-3582-2

Y. Cho, S. Lee, Y. Lee, T. Hong, J. Cho, Adv. Energy Mater. 1, 821 (2011), https://doi.org/10.1002/aenm.201100239

A.K. Kushwaha, Ş. Uğur, S. Akbudak, G. Uğur, J. Alloys Compd. 704, 101 (2017), https://doi.org/10.1016/j.jallcom.2017.02.055

Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10, 780 (2011), https://doi.org/10.1038/nmat3087

J.Y. Do, N.-K. Park, T.J. Lee, S.T. Lee, M. Kang, Int. J. Energy Res. 42, 429 (2018), https://doi.org/10.1002/er.3812

C. Wei, Z. Feng, M. Baisariyev, L. Yu, L. Zeng, T. Wu, H. Zhao, Y. Huang, M.J. Bedzyk, T. Sritharan, Z.J. Xu, Chem. Mater. 28, 4129 (2016), https://doi.org/10.1021/acs.chemmater.6b00713

M.S. Whittingham, Chem. Rev. 104, 4271 (2004), https://doi.org/10.1021/cr020731c

N. Wu, Z. Yang, H. Yao, Y. Yin, L. Gu, Y. Guo, Angew. Chem. 127, 5849 (2015), https://doi.org/10.1002/ange.201501005

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114, 11636 (2014), https://doi.org/10.1021/cr500192f

N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 138, 12894 (2016), https://doi.org/10.1021/jacs.6b05958

C. Pang, L. Gao, A.V. Singh, H. Chen, M.K. Bowman, N. Bao, L. Shen, A. Gupta, Chem. Mater. 30, 1701 (2018), https://doi.org/10.1021/acs.chemmater.7b05227

J. Deng, X. Yu, X. Qin, B. Liu, Y.-B. He, B. Li, F. Kang, Energy Storage Mater. 11, 184 (2018), https://doi.org/10.1016/j.ensm.2017.06.014

T. Irifune, K. Fujino, E. Ohtani, Nature 349, 409 (1991), https://doi.org/10.1038/349409a0

S.-J. Lee, J.-E. Kim, H.Y. Park, J. Mater. Res. 18, 733 (2003), https://doi.org/10.1557/JMR.2003.0099

H. Zhan, Y. Bian, Q. Yuan, B. Ren, A. Hursthouse, G. Zhu, Processes 6, 33 (2018), https://doi.org/10.3390/pr6040033

C.P. Sun, C.L. Huang, C.C. Lin, J.L. Her, C.J. Ho, J.-Y. Lin, H. Berger, H.D. Yang, Appl. Phys. Lett. 96, 122109 (2010), https://doi.org/10.1063/1.3368123

D. Santos-Carballal, P.E. Ngoepe, N.H. De Leeuw, Phys. Rev. B 97, 085126 (2018), https://doi.org/10.1103/PhysRevB.97.085126

P.F. Ndione, Y. Shi, V. Stevanovic, S. Lany, A. Zakutayev, P.A. Parilla, J.D. Perkins, J.J. Berry, D.S. Ginley, M.F. Toney, Adv Funct Materials 24, 610 (2014), https://doi.org/10.1002/adfm.201302535

T. Şaşmaz Kuru, M. Kuru, S. Bağci, J. Alloys Compd. 753, 483 (2018), https://doi.org/10.1016/j.jallcom.2018.04.255

A. Govindaraj, E. Flahaut, Ch. Laurent, A. Peigney, A. Rousset, C.N.R. Rao, J. Mater. Res. 14, 2567 (1999), https://doi.org/10.1557/JMR.1999.0344

Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. 2003, 2142 (2003), https://doi.org/10.1039/b306813g

N. Romeo, A. Dallaturca, R. Braglia, G. Sberveglieri, Appl. Phys. Lett. 22, 21 (1973), https://doi.org/10.1063/1.1654457

A. Govindaraj, E. Flahaut, Ch. Laurent, A. Peigney, A. Rousset, C.N.R. Rao, J. Mater. Res. 14, 2567 (1999), https://doi.org/10.1557/JMR.1999.0344

G. Gusmano, G. Montesperelli, E. Traversa, G. Mattogno, J. Am. Ceram. Soc. 76, 743 (1993), https://doi.org/10.1111/j.1151-2916.1993.tb03669.x

N.J. van der Laag, Ph.D. Thesis, Eindhoven University of Technology, 2002, https://pure.tue.nl/ws/portalfiles/portal/1952382/200213872.pdf

A. Mahmood, W. Guo, H. Tabassum, R. Zou, Adv. Energy Mater. 6, 1600423 (2016), https://doi.org/10.1002/aenm.201600423

R.J. Hill, J.R. Craig, G.V. Gibbs, Phys. Chem. Miner. 4, 317 (1979), https://doi.org/10.1007/BF00307535

S. Jiang, T. Lu, Y. Long, J. Chen, J. Appl. Phys. 111, 043516 (2012), https://doi.org/10.1063/1.3686727

S.I. Radautsan, I.M. Tiginyanu, Jpn. J. Appl. Phys. 32, 5 (1993), https://doi.org/10.7567/JJAPS.32S3.5

D. Santamaría-Pérez, M. Amboage, F.J. Manjón, D. Errandonea, A. Muñoz, P. Rodríguez-Hernández, A. Mújica, S. Radescu, V.V. Ursaki, I.M. Tiginyanu, J. Phys. Chem. C 116, 14078 (2012), https://doi.org/10.1021/jp303164k

G.M. Mustafa, N.A. Noor, M.W. Iqbal, M. Sajjad, M.A. Naeem, Q. Mahmood, H.M. Shaikh, A. Mahmood, W. Al-Masry, Mat. Sci. Semicon. Proc. 121, 105452 (2021), https://doi.org/10.1016/j.mssp.2020.105452

L. Ali, R. Neffati, A. Muhammad, M. Ullah, M.W. Ashraf, M. Haneef, G. Murtaza, Phys. Scr. 98, 015802 (2023), https://doi.org/10.1088/1402-4896/aca2f8

L. Wang, Z. Zhao-Karger, F. Klein, J. Chable, T. Braun, A.R. Schür, C. Wang, Y. Guo, M. Fichtner, ChemSusChem 12, 2286 (2019), https://doi.org/10.1002/cssc.201900225

P. Canepa, G. Sai Gautam, D. Broberg, S.-H. Bo, G. Ceder, Chem. Mater. 29, 9657 (2017), https://doi.org/10.1021/acs.chemmater.7b02909

R. Ali, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, Q.-R. Zheng, G. Su, J. Mater. Chem. A 6, 9220 (2018), https://doi.org/10.1039/C8TA01490F

P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990), https://doi.org/10.1016/0010-4655(90)90187-6

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria 2018

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865

M.G. Brik, A. Suchocki, A. Kamińska, Inorg. Chem. 53, 5088 (2014), https://doi.org/10.1021/ic500200a

J. Flahaut, M. Guittard, M. Patrie, M.P. Pardo, S.M. Golabi, L. Domange, Acta Cryst. 19, 14 (1965), https://doi.org/10.1107/S0365110X65002694

L.-P. Wang, Z. Zhao-Karger, F. Klein, J. Chable, T. Braun, A.R. Schür, C. Wang, Y. Guo, M. Fichtner, ChemSusChem 12, 2286 (2019), https://doi.org/10.1002/cssc.201900225

P. Canepa, G. Sai Gautam, D. Broberg, S.-H. Bo, G. Ceder, Chem. Mater. 29, 9657 (2017), https://doi.org/10.1021/acs.chemmater.7b02909

P. Canepa, S.-H. Bo, G. Sai Gautam, B. Key, W.D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, G. Ceder, Nat. Commun. 8, 1759 (2017), https://doi.org/10.1038/s41467-017-01772-1

A.K. Kushwaha, A. Bouhemadou, R. Khenata, A. Candan, S. Akbudak, Ş. Uğur, Comput. Condens. Matter 21, e00428 (2019), https://doi.org/10.1016/j.cocom.2019.e00428

A. Mahmood, S.M. Ramay, W. Al-Masry, A.A. Al-Zahrani, N.Y.A. Al-Garadi, Mod. Phys. Lett. B 35, 2150184 (2021), https://doi.org/10.1142/S0217984921501840

T. Alshahrani, G.M. Mustafa, T.H. Flemban, H. Althib, S. Al-Qaisi, N.A. Kattan, Q. Mahmood, ECS J. Solid State Sci. Technol. 9, 105001 (2020), https://doi.org/10.1149/2162-8777/abbb70

F. Tasnádi, M. Odén, I.A. Abrikosov, Phys. Rev. B 85, 144112 (2012), https://doi.org/10.1103/PhysRevB.85.144112

K. Tibane, P. Ngoepe, C. Masedi, MATEC Web Conf. 388, 07014 (2023), https://doi.org/10.1051/matecconf/202338807014

K. Bouferrache M.A. Ghebouli, Y. Slimani, B. Ghebouli, M. Fatmi, T. Chihi, M.A. Habila, N.H. Alotaibi, M. Sillanpaa, Bull. Mater. Sci. 47, 102 (2024), https://doi.org/10.1007/s12034-024-03196-2

E. Biagi, E. Borchi, S.D. Gennaro, L. Masi, J. Phys. D Appl. Phys. 25, 901 (1992), https://doi.org/10.1088/0022-3727/25/5/025

V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Phys. Status Solidi Rapid Res. Lett. 1, 89 (2007), https://doi.org/10.1002/pssr.200600116

F. Tasnádi, M. Odén, I.A. Abrikosov, Phys. Rev. B 85, 144112 (2012), https://doi.org/10.1103/PhysRevB.85.144112

C. Nianyi, L. Chonghe, Y. Shuwen, W. Xueye, J. Alloys Compd. 234, 130 (1996), https://doi.org/10.1016/0925-8388(95)01963-4

M.E. Fine, L.D. Brown, H.L. Marcus, Scr Metall. 18, 951 (1984), https://doi.org/10.1016/0036-9748(84)90267-9

S.F. Pugh, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 45, 823 (1954), https://doi.org/10.1080/14786440808520496

S. Al Qaisi, R. Ahmed, B. Ul Haq, D.P. Rai, S.A. Tahir, Mater. Chem. Phys. 250, 123148 (2020), https://doi.org/10.1016/j.matchemphys.2020.123148

P. Wachter, M. Filzmoser, J. Rebizant, Physica B 293, 199 (2001), https://doi.org/10.1016/S0921-4526(00)00575-5

M.A. Blanco, E. Francisco, V. Lua&ntilda;a, Comput. Phys. Commun. 158, 57 (2004), https://doi.org/10.1016/j.comphy.2003.12.001

K. Deepthi Jayan, V. Sebastian, Mater. Today Commun. 28, 102650 (2021), https://doi.org/10.1016/j.mtcomm.2021.102650