Spin Splitting of the Polaron Effective Mass in Triangular Quantum Well at Finite Temperature

Main Article Content

X.-H. Wang
Y.-J. Dai

Abstract

Based on the effective mass approximation theory and combining the linear combination operator with the unitary transformation method, the spin splitting characteristics of the polaron effective mass at finite temperatures were investigated. By introducing quantum statistical theory to describe the influence of thermally excited phonons, the functional relationships of the polaron effective mass with parameters such as temperature, electron–phonon coupling strength, and electron areal density were derived. Numerical calculations showed that the spin–orbit interaction leads to significant splitting of the polaron effective mass. The splitting distance increases with the increase in electron areal density, electron–phonon coupling strength, and vibration frequency, and decreases with the increase in velocity. An increase in temperature enhances electron–phonon interaction, leading to an increase in the polaron effective mass.

Article Details

How to Cite
[1]
X.-H. Wang and Y.-J. Dai, “Spin Splitting of the Polaron Effective Mass in Triangular Quantum Well at Finite Temperature”, Acta Phys. Pol. A, vol. 148, no. 1, p. 68, Aug. 2025, doi: 10.12693/APhysPolA.148.68.
Section
Regular segment

References

E.I. Rashba, A.L. Efros, Phys. Rev. Lett. 91, 126405 (2003), https://doi.org/10.1103/PhysRevLett.91.126405

S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Moln'ar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001), https://doi.org/10.1126/science.1065389

D. Culcer, J. Sinova, N.A. Sinova, T. Jungwirth, A.H. MacDonald, Q. Niu, Phys. Rev. Lett. 93, 046602 (2004), https://doi.org/10.1103/PhysRevLett.93.046602

S.-P. Shan, S.-H. Chen, J. Low Temp. Phys. 197, 379 (2019), https://doi.org/10.1007/s10909-019-02224-4

S.-P. Shan, S.-H. Chen, J.-L. Xiao, J. Low Temp. Phys. 175, 523 (2014), https://doi.org/10.1007/s10909-014-1163-z

W. Xuan, N. Yang, J. Luo, R. Wang, H. Yang, G. Jin, Appl. Phys. A 129, 88 (2023), https://doi.org/10.1007/s00339-022-06354-7

S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990), https://doi.org/10.1063/1.102730

C.X. Zhang, A. Pfeuffer-Jeschke, K. Ortner, C.R. Becker, G. Landwehr, Phys. Rev. B 65, 5324 (2002), https://doi.org/10.1103/PhysRevB.65.045324

F. Meng, J. Zhao, J. Cheng, W. Liu, Phys. B 649, 414468 (2023), https://doi.org/10.1016/j.physb.2022.414468

S.-P. Shan, S.-H. Chen, Pramana J. Phys. 94, 15 (2020), https://doi.org/10.1007/S12043-019-1878-0

J.P. Stanley, N. Pattinson, C.J. Lambert, J.H. Jefferson, Physica E 20, 433 (2004), https://doi.org/10.1016/j.physe.2003.08.052

Z.-J. Qiu, Y.-S. Gui, X.-Z. Shu, N. Dai, S.-L. Guo, J.-H. Chu, Acta Phys. Sin. 53, 1186 (2004), https://doi.org/10.7498/aps.53.1186

T.-N. Xu, H.-Z. Wu, C.-H. Sui, Acta Phys. Sin. 57, 7665 (2008), https://doi.org/10.7498/APS.57.7865

Y.-L. Li, S.-P. Shan, Acta Phys. Pol. A 146, 129 (2024), https://doi.org/10.12693/APhysPolA.146.129

Z. Hai-Rui, X. Jing-Lin, Commun. Theor. Phys. 50, 995 (2008), https://doi.org/10.1088/0253-6102/50/4/42