Giant Moses Effect in Ferrofluids in Axial-Symmetric Magnetic and Electric Fields

Main Article Content

S. Bednarek

Abstract

The article provides a generalized definition of the Moses effect, which is described as a change in the shape of a liquid's free surface due to interaction with different force fields. It provides a review of previous results and examples of new opportunities to study this effect. One example was realized using ferrofluid. As a result, the fluid level changed by 104–105, which is greater than the change in diamagnetic or paramagnetic liquids, and the changes agreed well with the predictions. The article proposes a scheme for organizing future studies of the Moses effect, which can also be easily used as attractive demonstration experiments. 

Article Details

How to Cite
[1]
S. Bednarek, “Giant Moses Effect in Ferrofluids in Axial-Symmetric Magnetic and Electric Fields”, Acta Phys. Pol. A, vol. 148, no. 1, p. 57, Aug. 2025, doi: 10.12693/APhysPolA.148.57.
Section
Regular segment

References

N. Hirota, T. Homma, H. Sugawara et al., Jpn. J. Appl. Phys. 34, L991 (1995), https://doi.org/10.1143/JJAP.34.L991

K. Kitazawa, Y. Ikezoe, H. Uetake, N. Hirota, Phys. B Condens. Mater. 294-295, 709 (2001), https://doi.org/10.1016/S0921-4526(00)00749-3

W.M. Haynes, CRC Handbook of Chemistry and Physics, A Ready-Reference Book of Chemical and Physical Data] , Taylor and Francis Group, Boca Raton 2014, p. 12-108, https://archive.org/details/crchandbookofchemistryandphysicsareadyreferencebookofchemicalandphysicaldatacrcpress2016

D. Shulman, Ph.D. Thesis, Ariel University 2023

D. Shulman, J. Magn. 28, 64 (2023), https://doi.org/10.4283/JMAG.2023.28.1.064

D. Shulman, Rev. Sci. Instrum. 94, 045114 (2023), https://doi.org/10.1063/5.0147815

D. Shulman, J. Appl. Phys. 133, 173905 (2023), https://doi.org/10.1063/5.0151280

D. Shulman, M. Lewkowicz, E. Bromashenko, J. Macromol. Sci. B 61, 1463 (2022), https://doi.org/10.1080/00222348.2023.2194726

D. Shulman, M. Lewkowicz, E. Bromashenko, J. Magn. Magn. Mater. 571, 170553 (2023), https://doi.org/10.1016/j.jmmm.2023.170553

T. Lemura, T. Kimura, M. Sugitani, M. Kumakura, Adv. Mater. 18, 1549 (2006), https://doi.org/10.1002/adma.200600085

H. Sugawara, N. Hirota, T. Homma et al., J. Appl. Phys. 79, 4721 (1996), https://doi.org/10.1063/1.361652

P.G. Meyer, V. Adlakha, H. Kantz, K.E. Bassler, New J. Phys. 20, 113033 (2018), https://doi.org/10.1088/1367-2630/aaeea2

S. Ueno, M. Iwasaka, J. Appl. Phys. 75, 7177 (1994), https://doi.org/10.1063/1.356686

M. Frenkel, V. Danchuk, V. Multanen, I. Legchenkova, Y. Bormashenko, O. Gendelman, E. Bormashenko, Langmuir 34, 6388 (2018), https://doi.org/10.1021/acs.langmuir.8b00424

Z. Chen, J. Ellis, E.D. Dahlberg, Rev. Sci. Instum. 83, 095112 (2012), https://doi.org/10.1063/1.4749847

T. Kimura, M. Yamato, A. Nara, Langmuir 20, 572 (2004), https://doi.org/10.1021/la035768m

E. Bromashenko, Adv. Colloid Interface Sci. 269, 1 (2019), https://doi.org/10.1016/j.cis.2019.04.003

N. Derby, S. Olbert, Am. J. Phys. 78, 229 (2010), https://doi.org/10.1119/1.3256157

V. Labinac, D. Kotnik-Karuza, Am. J. Phys. 74, 621 (2006), https://doi.org/10.1119/1.2198885

D. Laumann, Phys. Teach. 56, 352 (2018), https://doi.org/10.1119/1.5051143

Z. Chen, E.D. Dahlberg, Phys. Teach. 49, 144 (2011), https://doi.org/10.1119/1.3555497

L.D. Landau, J.S. Bell, M.J. Kearesley, L.P. Pitajewski, F.M. Lifchitz, J.B. Sykes, Electrodynamics of Continuous Media, Elsevier Butterworth Heinmann, Oxford 1984

Y.T. Tomoda, J. Segawa, T. Takamura, J. Phys. Earth 20, 267 (1972), https://doi.org/10.4294/jpe1952.20.267

A. Łyszkowicz, J. Planet. Geod. 35, 31 (2000), https://www.researchgate.net/profile/Adam-Lyszkowicz/publication/246434057_Improvement_of_the_Quasigeoid_Model_in_Poland_by_GPS_and_Levelling_Data/links/5402f18d0cf2c48563afbced/Improvement-of-the-Quasigeoid-Model-in-Poland-by-GPS-and-Levelling-Data.pdf

M.A. Plouns, Applied Electrodynamics, McGraw-Hill, New York 1978

W.E. Willshaw, L. Rushforth, A.G. Stainsby, R. Latam, A.W. Balls, A.H. King, J. Institut. Electr. Eng. 93, 985 (2018), https://doi.org/10.1049/ji-3a-1.1946.0188

L. Zheoyang, L. Yuxin, L. Ruxin, Laser Photon. Rev. 17, 2100705 (2023), https://doi.org/10.1002/lpor.202370004

E.W. Gaul, Appl. Opt. 49, 1676 (2010), https://doi.org/10.1364/AO.49.001676

W.M. Winslow, J. Appl. Phys. 20, 1137 (1949), https://doi.org/10.1063/1.1698285

J.E. Stangroom, Phys. Technol. 14, 290 (1983), https://doi.org/10.1088/0305-4624/14/6/305

W. Wen, X. Huang, S. Yang, K. Lu, P. Sheng, Natur. Mater. 2, 727 (2003), https://doi.org/10.1038/nmat993

R. Hades, G. Warr, G. Gregory, R. Atkin, Chem. Rev. 115, 6357 (2015), https://doi.org/10.1021/cr500411q

C. Scherer, A.M. Figueiredo Neto, Brazil. J. Phys. 35, 718 (2005), https://doi.org/10.1590/S0103-97332005000400018

R.E. Rosensweig, Sci. Am. 247, 136 (1982), https://www.jstor.org/stable/24966707

M. Shliomis, Phys. Rev. 64, 060501(R) (2001), https://doi.org/10.1103/PhysRevE.64.060501

A.Y. Solovyova, E.A. Elfimova, J. Magn. Magn. Mater. 495, 165846 (2020), https://doi.org/10.1016/j.jmmm.2019.165846

C. Gollwitzer, M. Krekhova, G. Lattermann, I. Rehberg, R. Richter, Soft Matter 5, 2093 (2009), https://doi.org/10.1039/B820090D

S. Bednarek, J. Magn. Magn. Mater. 323, 957 (2011), https://doi.org/10.1016/j.jmmm.2010.11.078

C.S.S.R. Kumar, F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011), https://doi.org/10.1016/j.addr.2011.03.008

A. Bibo, R. Masana, A. King, G. Li, M.F. Daqaq, Phys. Lett. A 376, 2163 (2012), https://doi.org/10.1016/j.physleta.2012.05.033

L. Melillo, K. Raj, J. Audio Eng. Soc. 29, 132 (1981)

J. Philip, T. Jaykumar, P. Kalyanasundaram, B. Raj, Meas. Sci. Technol. 14, 1289 (2003), https://doi.org/10.1088/0957-0233/14/8/314

I. Legchenkova, G. Chaniel, M. Frenkiel, Y. Bormashenko, S. Shoval, E. Bormashenko, Surf. Innov. 6, 231 (2018), https://doi.org/10.1680/jsuin.18.00022

J. Dong, R. Miao, J. Qi, J. Appl. Phys. 100, 124914 (2006), https://doi.org/10.1063/1.2401315

E. Blums, A. Cebers, M.M. Maiorov, Magnetic Fluids, Walter de Gruyter, Berlin 1997

F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena — Drops, Bubbles, Pearls, Waves, Ed. A. Reisinger, Springer, Berlin 2002

Moses effect, Wikipedia (access 07.2025), https://en.wikipedia.org/wiki/Moses_effect