Investigation of the Two-Dimensional Non-Hermitian Su–Schrieffer–Heeger Model
Main Article Content
Abstract
This article presents an examination of a two-dimensional, non-Hermitian Su–Schrieffer–Heeger model, which differs from its conventional Hermitian counterpart by incorporating gain and/or loss terms, mathematically represented by imaginary on-site potentials. The time-reversal symmetry is disrupted due to these on-site potentials. Exceptional points in a non-Hermitian system feature eigenvalue coalescence and non-trivial eigenvector degeneracies. Utilization of the rank-nullity theorem and graphical analysis of the phase rigidity factor enables identification of true exceptional points. Furthermore, this investigation achieves vectorized Zak phase quantization and examines a topolectric resistors–inductors–capacitors circuit to derive the corresponding topological boundary resonance condition and the quantum Hall susceptance. Although Chern number quantization is not feasible, staggered hopping amplitudes corresponding to unit-cell lattice sites lead to broken inversion symmetry with non-zero Berry curvature, resulting in finite anomalous Nernst conductivity.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
S.H. Liu, W.L. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y.J. Xiang, T.J. Cui, S. Zhang, Research 2019, 8609875 (2019), https://doi.org/10.34133/2019/8609875
F. Liu, Phys. Rev. B 108, 245140 (2023), https://doi.org/10.1103/PhysRevB.108.245140
W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979), https://doi.org/10.1103/PhysRevLett.42.1698
P. Orlov, G.V. Shlyapnikov, D.V. Kurlov, Phys. Rev. B 111, L081105 (2025), https://doi.org/10.1103/PhysRevB.111.L081105
R. Nehra, D. Roy, Phys. Rev. B 105, 195407 (2022), https://doi.org/10.1103/PhysRevB.105.195407
V.M. Alvarez, J. B. Vargas, L.F. Torres, Phys. Rev. B 97, 121401(R) (2018), https://doi.org/10.1103/PhysRevB.97.121401
K. Kawabata, T. Bessho, M. Sato, Phys. Rev. Lett. 123, 066405 (2019), https://doi.org/10.1103/PhysRevLett.123.066405
C.C. Ye, W.L. Vleeshouwers, S. Heatley, V. Gritsev, C.M. Smith, Phys. Rev. Research 6, 023202 (2024), https://doi.org/10.1103/PhysRevResearch.6.023202
Y. Ashida, Z. Gong, M. Ueda, Adv. Phys. 69, 249 (2020), https://doi.org/10.1080/00018732.2021.1876991
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato, Phys. Rev. X 9, 041015 (2019), https://doi.org/10.1103/PhysRevX.9.041015
J.-D. Lin, P.-C. Kuo, N. Lambert, A. Miranowicz, F. Nori, Y.-N. Chen, Nat. Commun. 16, 1289 (2025), https://doi.org/10.1038/s41467-025-56242-w
C.C. Wojcik, K. Wang, A. Dutt, J. Zhong, S. Fan, Phys. Rev. B 106, L161401 (2022), https://doi.org/10.1103/PhysRevB.106.L161401
A. Alase, S. Karuvade, C.M. Scandolo, J. Phys. A Math. Theor. 55, 244003 (2022), https://doi.org/10.1088/1751-8121/ac6d2d
J.-W. Ryu, J.-H. Han, C.-H. Yi, M.J. Park, H.C. Park, Commun. Phys. 7, 109 (2024), https://doi.org/10.1038/s42005-024-01595-9
C.M. Bender, Rep. Prog. Phys. 70, 947 (2007), https://doi.org/10.1088/0034-4885/70/6/R03
I. Mandal, E.J. Bergholtz, Phys. Rev. Lett. 127, 186601 (2021), https://doi.org/10.1103/PhysRevLett.127.186601
J. Zak, Phys. Rev. Lett. 62, 2747 (1989), https://doi.org/10.1103/PhysRevLett.62.2747
P. Delplace, D. Ullmo, G. Montambaux, Phys. Rev. B 84, 195452 (2011), https://doi.org/10.1103/PhysRevB.84.195452
J. Dong, V. Juričić, B. Roy, Phys. Rev. Research 3, 023056 (2021), https://doi.org/10.1103/PhysRevResearch.3.023056
T. Hoffmann, T. Helbig, F. Schindler et al., Phys. Rev. Research 2, 023265 (2020), https://doi.org/10.1103/PhysRevResearch.2.023265
D. Geng, H. Zhou, S. Yue, Z. Sun, P. Cheng, L. Chen, S. Meng, K. Wu, B. Feng, Nat. Commun. 13, 7000 (2022), https://doi.org/10.1038/s41467-022-34043-9
C.M. Bender, Rep. Prog. Phys. 70, 947 (2007), https://doi.org/10.1088/0034-4885/70/6/R03
I. Mandal, E.J. Bergholtz, Phys. Rev. Lett. 127, 186601 (2021), https://doi.org/10.1103/PhysRevLett.127.186601
N. Okuma, K. Kawabata, K. Shiozaki, M. Sato, Phys. Rev. Lett. 124, 086801 (2020), https://doi.org/10.1103/PhysRevLett.124.086801
K. Kawabata, N. Okuma, M. Sato, Phys. Rev. B 101, 195147 (2020), https://doi.org/10.1103/PhysRevB.101.195147
X. Zhang, T. Zhang, M.-H. Lu, Y.-F. Chen, Adv. Phys. X 7, 2109431 (2022), https://doi.org/10.1080/23746149.2022.2109431
H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, B. Zhang, Nat. Commun. 12, 1888 (2021), https://doi.org/10.1038/s41467-021-22223-y
S. Yao, Z. Wang, Phys. Rev. Lett. 121, 086803 (2018), https://doi.org/10.1103/PhysRevLett.121.086803
S. Yao, F. Song, Z. Wang, Phys. Rev. Lett. 121, 136802 (2018), https://doi.org/10.1103/PhysRevLett.121.136802
F.K. Kunst, E. Edvardsson, J.C. Budich, E.J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018), https://doi.org/10.1103/PhysRevLett.121.026808
K. Yokomizo, S. Murakami, Phys. Rev. Lett. 123, 066404 (2019), https://doi.org/10.1103/PhysRevLett.123.066404
Y. Yi, Z. Yang, Phys. Rev. Lett. 125, 186802 (2020), https://doi.org/10.1103/PhysRevLett.125.186802
Z. Yang, K. Zhang, C. Fang, J. Hu, Phys. Rev. Lett. 125, 226402 (2020), https://doi.org/10.1103/PhysRevLett.125.226402
K. Zhang, Z. Yang, C. Fang, Phys. Rev. Lett. 125, 126402 (2020), https://doi.org/10.1103/PhysRevLett.125.126402
A. Ghatak, M. Brandenbourger, J. van Wezel, C. Coulais, Proc. Natl. Acad. Sci. U.S.A. 117, 29561 (2020), https://doi.org/10.1073/pnas.2010580117
L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue, Phys. Rev. Lett. 126, 230402 (2021), https://doi.org/10.1103/PhysRevLett.126.230402
K.G.Wilson, Phys. Rev. D 10, 2445 (1974), https://doi.org/10.1103/PhysRevD.10.2445
H. Wang, X. Tang, H. Xu, J. Li, X. Qian, npj Quantum Mater. 7, 61 (2022), https://doi.org/10.1038/s41535-022-00472-4
M. Kim, J. Rho, Nanophotonics 9, 3227 (2020), https://doi.org/10.1515/nanoph-2019-0451
C.H. Lee, S. Imhof, C. Berger et al., Commun. Phys. 1, 39 (2018), https://doi.org/10.1038/s42005-018-0035-2
R.Y.Q. Xun, Mol. Front. J. 04, 9 (2020), https://doi.org/10.1142/S2529732520970020
A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Rev. Mod. Phys. 93, 025005 (2021), https://doi.org/10.1103/RevModPhys.93.025005
Z.B. Siu, M.B.A. Jalil et al., Phys. Rev. B 106, 245128 (2022), https://doi.org/10.1103/PhysRevB.109.045410
J.C. Perez-Pedraza, J.E. Barrios-Vargas, A. Raya, "Impact of impurities on the topological boundaries and edge state localization in a staggered chain of atoms: SSH model and its topoelectrical circuit realization" (2024), https://arxiv.org/abs/2402.05261
A. Fan, G.-Y. Huang, S.-D. Liang, J. Phys. Commun. 4, 115006 (2020), https://doi.org/10.1088/2399-6528/abcab6
D. Leykam, K.Y. Bliokh, C. Huang, Y.D. Chong, F. Nori, Phys. Rev. Lett. 118, 040401 (2017), https://doi.org/10.1103/PhysRevLett.118.040401
T. Gao, E. Estrecho, K.Y. Bliokh et al., Nature 526, 554 (2015), https://doi.org/10.1038/nature15522
M. Król, I. Septembre, P. Oliwa et al., Nat. Commun. 13, 5340 (2022), https://doi.org/10.1038/s41467-022-33001-9
H. Zhou, C. Peng, Y. Yoon, C.W. Hsu, K.A. Nelson, L. Fu, J.D. Joannopoulos, M. Soljačić, B. Zhen, Science 359, 1012 (2018), https://doi.org/10.1126/science.aap9859
R. Su, E. Estrecho, D. Biegańska, Y. Huang, M. Wurdack, M. Pieczarka, A.G. Truscott, T.C.H. Liew, E.A. Ostrovskaya, Q. Xiong, Sci. Adv. 7, eabj8905 (2021), https://doi.org/10.1126/sciadv.abj8905
C.C. Ye, W.L. Vleeshouwers et al., "Quantum metric of non-Hermitian Su-Schrieffer-Heeger systems" (2023), https://arxiv.org/abs/2305.17675
H. Shen, B. Zhen, L. Fu, Phys. Rev. Lett. 120, 146402 (2018), https://doi.org/10.1103/PhysRevLett.120.146402
F.D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004), https://doi.org/10.1103/PhysRevLett.93.206602
M. Chen, S. Wan, J. Phys. Condens. Matter 24, 325502 (2012), https://doi.org/10.1088/0953-8984/24/32/325502
D. Xiao, Y. Yao, Z. Fang, Q. Niu, Phys. Rev. Lett. 97, 026603 (2006), https://doi.org/10.1103/PhysRevLett.97.026603
D. Xiao, M.-C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010), https://doi.org/10.1103/RevModPhys.82.1959
T. Fukui, Y. Hatsugai, H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005), https://doi.org/10.1143/JPSJ.74.1674
M. Nakamura, S. Masuda, "Chern numbers in two-dimensional systems with spiral boundary conditions" (2024), https://arxiv.org/abs/2401.12674
J.K. Asbóth, L. Oroszlány, A. Pályi, A Short Course on Topological Insulators, Springer, Cham 2016, https://doi.org/10.1007/978-3-319-25607-8
T.L. Hughes, E. Prodan, B.A. Bernevig, Phys. Rev. B 83, 245132 (2011), https://doi.org/10.1103/PhysRevB.83.245132
G. van Miert, C. Ortix, C.M. Smith, 2D Mater. 4, 015023 (2017), https://doi.org/10.1088/2053-1583/4/1/015023
R. Lin, T. Tai, L. Li, C.H. Lee, Front. Phys. 18, 53605 (2023), https://doi.org/10.1007/s11467-023-1309-z
C. Hou, G. Wu, Y. Ruan, S. Chen, C.H. Lee, Z. Ni, Phys. Rev. B 109, 205135 (2024), https://doi.org/10.1103/PhysRevB.111.075132