Structural Modifications in Vitreous SiO2 Induced by N and Ar Ion Irradiation: Competing Roles of Nuclear and Electronic Energy Losses

Main Article Content

A. Meftah
N. Cheridi

Abstract

This study investigated structural modifications in vitreous silica (SiO2)  induced  by low-energy  ion  irradiation  using  75 keV N5+ and 165 keV Ar11+ ions. The primary goal was to clarify the competing roles of nuclear and electronic energy losses in these changes. Fourier transform   infrared   spectroscopy   revealed  a  decrease  in  the 1078 cm-1 TO3 band and the appearance of a 1044 cm-1 peak, indicating bond angle distortion and densification. Comparative analysis, supported by the unified thermal spike model, demonstrates that nuclear energy loss is the dominant mechanism driving structural transformations under these irradiation conditions, with electronic energy loss having a limited impact.


 

Article Details

How to Cite
[1]
A. Meftah and N. Cheridi, “Structural Modifications in Vitreous SiO2 Induced by N and Ar Ion Irradiation: Competing Roles of Nuclear and Electronic Energy Losses”, Acta Phys. Pol. A, vol. 148, no. 1, p. 34, Aug. 2025, doi: 10.12693/APhysPolA.148.34.
Section
Regular segment

References

A. Benyagoub, S. Löffler, M. Rammensee, S. Klaumünzer, G. Saemannn-Ischenko, Nucl. Instrum. Methods Phys. Res. B 65, 228 (1992), https://doi.org/10.1016/0168-583X(92)95039-T

M.C. Busch, A. Slaoui, P. Siffert, E. Dooryhee, M. Toulemonde, J. Appl. Phys. 71, 2596 (1992), https://doi.org/10.1063/1.351078

A. Meftah, M. Djebara, N. Khalfaoui, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 146, 431 (1998), https://doi.org/10.1016/S0168-583X(98)00496-0

S. Klaumünzer, Nucl. Instrum. Methods Phys. Res. B 225, 136 (2004), https://doi.org/10.1016/j.nimb.2004.05.014

C. Rotaru, F. Pawlak, N. Khalfaoui, C. Dufour, J. Pérričre, A. Laurent, J.P. Stoquert, H. Lebius, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 272, 9 (2012), https://doi.org/10.1016/j.nimb.2011.01.022

K. Awazu, S. Ishii, K. Shima, S. Roorda, J.L. Brebner, Phys. Rev. B 62, 3689 (2000), https://doi.org/10.1103/PhysRevB.62.3689

M. Toulemonde, W.J. Weber, G.S. Li, V. Shutthanandan, P. Kluth, T. Yang, Y. Wang, Y. Zhang, Phys. Rev. B 83, 054106 (2011), https://doi.org/10.1103/PhysRevB.83.054106

A. Benyagoub, M. Toulemonde, J. Mater. Res. 30, 1529 (2015), https://doi.org/10.1557/jmr.2015.75

J.P. Biersack, L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980), https://doi.org/10.1016/0029-554X(80)90440-1

P. Thévenard, G. Guiraud, C.H.S. Dupuy, B. Delaunay, Radiat. Eff. 32, 83 (1977), https://doi.org/10.1080/00337577708237461

H.D. Mieskes, W. Assmann, F. Grüner, H. Kucal, Z.G. Wang, M. Toulemonde, Phys. Rev. B 67, 155414 (2003), https://doi.org/10.1103/PhysRevB.67.155414

J.P. Ollerhead, J. Bottiger, J.A. Davies, J. L'ecuyer, H.K. Haugen, N. Matsunami, Radiat. Eff. 49, 203 (1980), https://doi.org/10.1080/00337578008237484

M. Toulemonde, C. Dufour, E. Paumier, F. Pawlak, MRS Proc. 504, 99 (1998), https://doi.org/10.1557/PROC-504-99

A. Benyagoub, S. Klaumünzer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 146, 449 (1998), https://doi.org/10.1016/S0168-583X(98)00478-9

A. Dallanora, T.L. Marcondes, G.G. Bermudez, P.F.P. Fichtner, C. Trautmann, M. Toulemonde, R.M. Papal'eo, J. Appl. Phys. 104, 024307 (2008), https://doi.org/10.1063/1.2957052

M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, in: Ion Beam Science: Solved and Unsolved Problems, Ed. P. Sigmund, The Royal Danish Academy of Sciences and Letters, Copenhagen 2006, p. 263

Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, J. Phys. Condens. Matter 6, 6733 (1994), https://doi.org/10.1088/0953-8984/6/34/006

M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992), https://doi.org/10.1103/PhysRevB.46.14362

A. Meftah, F. Brisard, J.M. Costantini et al., Phys. Rev. B 49, 12457 (1994), https://doi.org/10.1103/PhysRevB.49.12457

A. Meftah, J.M. Costantini, N. Khalfaoui, S. Boudjadar, J.P. Stoquert, F. Studer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237, 563 (2005), https://doi.org/10.1016/j.nimb.2005.02.025

M. Toulemonde, J.M. Costantini, C. Dufour, A. Meftah, E. Paumier, F. Studer, Nucl. Instrum. Methods Phys. Res. B 116, 37 (1996), https://doi.org/10.1016/0168-583X(96)00007-9

P. Sigmund, C. Claussen, J. Appl. Phys. 52, 990 (1981), https://doi.org/10.1063/1.328790

K. Nordlund, J. Peltola, J. Nord, J. Keinone, R.S. Averback, J. Appl. Phys. 90, 1710 (2001), https://doi.org/10.1063/1.1384856

M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166--167, 903 (2000), https://doi.org/10.1016/S0168-583X(99)00799-5

C. Dufour, A. Audouard, F. Beuneu et al., J. Phys. Condens. Matter 5, 4573 (1993), https://doi.org/10.1088/0953-8984/5/26/027

Yu.V. Martynenko, Yu.N. Yavlinskii, Sov. Phys. Dokl. 2, 391 (1983)

C. Dufour, V. Khomrenkov, Y.Y. Wang, Z.G. Wang, F. Aumayr, M. Toulemonde, J. Phys. Condens. Matter 29, 095001 (2017), https://doi.org/10.1088/1361-648X/aa547a

M. Toulemonde, W. Assmann, C. Trautmann, F. Grüner, Phys. Rev. Lett. 88, 057602 (2002), https://doi.org/10.1103/PhysRevLett.88.057602

M. Toulemonde, W. Assmann, C. Trautmann, Nucl. Instrum. Methods Phys. Res. B 379, 2 (2016), https://doi.org/10.1016/j.nimb.2016.03.023