Unusually Long-Time Protonic Conductivity Behavior of CsH5(PO4)2 Crystal at High Pressure

Main Article Content

M. Zdanowska-Frączek
T. Masłowski

Abstract

Impedance spectroscopy was used to examine the electrical conductivity of CsH5(PO4)2  single crystals across a frequency range from 100 Hz to 1 MHz, with measurements taken at temperatures from 350 to 417 K and pressures from 0.1 to 360 MPa. At 417 K and 170.7 MPa, the protonic conductivity of the crystal showed significant changes over time. Initially, conductivity remained relatively stable for less than 10 h; however, it increased tenfold within 300 h, exhibiting erratic fluctuations followed by a gradual decline. We suggest a three-dimensional model of protonic conductivity that qualitatively reproduces the observed behavior.


 

Article Details

How to Cite
[1]
M. Zdanowska-Frączek and T. Masłowski, “Unusually Long-Time Protonic Conductivity Behavior of CsH5(PO4)2 Crystal at High Pressure”, Acta Phys. Pol. A, vol. 148, no. 4, p. 295, Dec. 2025, doi: 10.12693/APhysPolA.148.295.
Section
Regular segment

References

A. Shivhare, A. Kumar, R. Srivastava, Green Chem. 23, 3818 (2021), https://doi.org/10.1039/D1GC00376C

H. Zhao, Z.-Y. Yuan, ChemCatChem 12, 3797 (2020), https://doi.org/10.1002/cctc.202000360

L. Chen, Y. Zhao, J. Yang, D. Liu, X. Wei, X. Wang, Y. Zheng, Inorg. Chem. 59, 1566 (2020), https://doi.org/10.1021/acs.inorgchem.9b03475

A. Goñi-Urtiaga, D. Presvytes, K. Scott, Hydrog. Energy 37, 3358 (2012), https://doi.org/10.1016/j.ijhydene.2011.09.152

O. Paschos, J. Kunze, U. Stimming, F. Maglia, J. Phys. Condens. Matter 23, 234110 (2011), https://doi.org/10.1088/0953-8984/23/23/234110

S.M. Haile, C.R.I. Chisholm, K. Sasaki, D.A. Boysen, T. Uda, Faraday Discuss. 134, 17 (2007), https://doi.org/10.1039/b604311a

Q. Cheng, X. Zhao, G.. Yang, L. Mao, F. Liao, F. Chen, P. He, D. Pan, S. Chen, Energy Storage Mater. 41, 842 (2021), https://doi.org/10.1016/j.ensm.2021.07.017

W. Habraken, P. Habibovic, M. Epple, M. Bohner, Mater. Today 19, 69 (2015), https://doi.org/10.1016/j.mattod.2015.10.008

K.D. Kreuer, A. Rabenau, W. Weppner, Angewandte Chemie Int. 21, 208 (1982), https://doi.org/10.1002/anie.198202082

T. Masłowski, A. Drzewiński, P. Ławniczak, M. Zdanowska-Frączek, J. Ulner, Solid State Ion. 278, 114 (2015), https://doi.org/10.1016/j.ssi.2015.06.003

A.I. Baranov, L.A. Shuvalov, N.M. Schagina, JETP Lett. 36, 381 (1982), http://jetpletters.ru/ps/1339/article_20210.pdf

Ph. Colomban, A. Novak, in: Ph. Colomban (Ed.), Proton Conductors: Solids, Membranes and Gels - Materials and Devices, Cambridge Univ. Press, Cambridge, 38 (1992)

A.I. Baranov, V.P. Kniznichenko, L.A. Shuvalov, Ferroelectrics 100, 135 (1989), https://doi.org/10.1080/00150198908007907

V.G. Ponomareva, G.V. Lavrova, Solid State Ionics 145, 197 (2001), https://doi.org/10.1016/S0167-2738(01)00957-2

G.V. Lavrova, V.G. Ponomareva, Inorg. Mater. 38, 1172 (2002), https://doi.org/10.1023/A:1020931019596

S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature 410, 910 (2001), https://doi.org/10.1038/35073536

D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, Science 303, 68 (2004), https://doi.org/10.1126/science.1090920

T. Uda, S.M. Haile, Electrochem. Solid-State Lett. 8, A245 (2005), https://doi.org/10.1149/1.1883874

G.V. Lavrova, M.V. Russkih, V.G. Ponomareva, N.F. Uvarov, Russian Journal of Electrochemistry 41, 485 (2005), https://doi.org/10.1007/s11175-005-0094-z

D.A. Boysen, S.M. Haile, H. Liu, R.A. Secco, Chem. Mater. 15, 727 (2003), https://doi.org/10.1021/cm020138b

B.V. Merinov, A.I. Baranov, L.A. Shuvalov, Sov. Phys. Crystallogr. 35, 200 (1990)

B.V. Merinov, Solid State Ionics 84, 89 (1996), https://doi.org/10.1016/S0167-2738(96)83010-4

A. Efremov et al., Russ. J. Inorg. Chem. 26, 3213 (1981)

Crystallography Open Database available at https://www.crystallography.net/cod/

G.V. Lavrova, E.B. Burgina, A.A. Matvienko, V.G. Ponomareva, Solid State Ionics 177, 1117 (2006), https://doi.org/10.1016/j.ssi.2006.05.001

V.V. Sinitsin, A.I. Baranov, E.G. Ponyatovskii, Russ. J. Solid State Phys. 37, 1121 (1995)

A. Gradišek, B. Dimnik, S. Vrtnik, M. Wencka, M. Zdanowska-Frączek, G.V. Lavrova, J. Dolinšek, J. Phys.: Condens. Matter 23, 085901 (2011), https://doi.org/10.1088/0953-8984/23/8/085901

B. Andriyevsky, M. Zdanowska-Frączek, Solid State Ionics 207, 14 (2012), https://doi.org/10.1016/j.ssi.2011.11.027

T. Meier, F. Trybel, S. Khandarkhaeva et al., Nature Commun 13, 3042 (2022), https://doi.org/10.1038/s41467-022-30662-4

G.A. Samara, T. Sakudo, K. Yoshimitsu, Phys. Rev. Lett. 35, 1767 (1975), https://doi.org/10.1103/PhysRevLett.35.1767

A. Katrusiak, Phys. Rev. B 48, 2992 (1993), https://doi.org/10.1103/PhysRevB.48.2992

A. Katrusiak, J. Mol. Struct. 374, 177 (1996), https://doi.org/10.1016/S0166-1280(96)80074-1

P. Ławniczak, M. Zdanowska-Frączek, Z.J. Frączek, K. Pogorzelec-Glaser, C. Pawlaczyk, Solid State Ionics. 225, 268 (2012), https://doi.org/10.1016/j.ssi.2012.01.041

T. Masłowski, A. Drzewiński, J. Ulner, J. Wojtkiewicz, M. Zdanowska-Frączek, K. Nordlund, A. Kuronen, Phys. Rev. E 90, 012135 (2014), https://doi.org/10.1103/PhysRevE.90.012135

T. Masłowski, M. Zdanowska-Frączek, Ł. Lindner, Solid State Ion. 306, 20 (2017), https://doi.org/10.1016/j.ssi.2017.02.015

Ł. Lindner, M. Zdanowska-Frązek, A. Pawłowski, Z.J. Frączek, T. Masłowski, J. Appl. Phys. 122, 035105 (2017), https://doi.org/10.1063/1.4985828

T. Masłowski, Acta Phys. Pol. A 135, 1263 (2019), https://doi.org/10.12693/APhysPolA.135.1263