Growing Perfect Single-Crystal Epitaxial Films of (Si2)1-x(GaN)x Solid Solutions on Si (111) Substrates from the Liquid Phase
Main Article Content
Abstract
The technological capabilities of the method of liquid-phase epitaxy from a limited volume of Sn solution-melt for obtaining films of substitutional solid solution (Si2)1-x(GaN)x on Si (111) substrates are shown. The grown films had a single-crystal structure with (111) orientation, n-type conductivity with a resistivity of ρ ≈ 1.38 Ω ∙ cm, a carrier concentration of n ≈ 3.4 x 1016 cm-3, and a charge carrier mobility of µ ≈ 133 cm2/(V ∙ s). The relatively narrow width (full width at half maximum of 780 arcsec) and high intensity (2 x 105 pulses/s) of the main structural reflection (111)Si/GaN indicate a high degree of perfection of the crystal lattice of the epitaxial layer (Si2)1-x(GaN)x. The photosensitivity region of p-Si–n-(Si2)1-x(GaN)x heterostructures covers the photon energy range from 1.2 to 2.4 eV, with a maximum at 1.9 eV.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M.A. Fakhri, A.A. Alwahib, E.T. Salim et al., Silicon 15, 7523 (2023), https://doi.org/10.1007/s12633-023-02528-x
L. Ravi, M.A. Rather, K.-L. Lin, C.-T. Wu, T.-Y. Yu, K.-Y. Lai, J.-I. Chyi, ACS Appl. Electron. Mater. 5, 146-154 (2023), https://doi.org/10.1021/acsaelm.2c01078
H.D. Jabbar, M.A. Fakhri, M.J. AbdulRazzaq, Silicon 14, 12837 (2022), https://doi.org/10.1007/s12633-022-01999-8
Danmei Zhao and Degang Zhao, J. Semicond. 39, 033006 (2018), https://doi.org/10.1088/1674-4926/39/3/033006
L. Wang, G. Walker, J. Chai, A. Iacopi, A. Fernandes, S. Dimitrijev, Sci. Rep. 5, 15423 (2015), https://doi.org/10.1038/srep15423
H. Aida, H. Takeda, N. Aota, K. Koyama, Jpn. J. Appl. Phys. 51, 016504 (2012), https://doi.org/10.1143/JJAP.51.016504
K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, G. Borghs, J. Electron. Mater. 35, 592 (2006), https://doi.org/10.1007/s11664-006-0105-1
J.H. Lee, K.S. Im, Crystals 11, 234 (2021), https://doi.org/10.3390/cryst11030234
A. Able, W. Wegscheider, K. Engl, J. Zweck, J. Cryst. Growth 276, 415 (2005), https://doi.org/10.1016/j.jcrysgro.2004.12.003
M. Mansor, R. Norhaniza, A. Shuhaimi, M.I. Hisyam, A. Omar, A. Williams, M.R.M. Hussin, Sci. Rep. 13, 8793 (2023), https://doi.org/10.1038/s41598-023-35677-5
A.S. Saidov, Sh.N. Usmonov, D.V. Saparov, Adv. Mater. Sci. Eng. 2019, 3932195 (2019), https://doi.org/10.1155/2019/3932195
A.S. Saidov, D.V. Saparov, S.N. Usmonov, A.S. Razzakov, M. Kalanov, Int. J. Mod. Phys. B 37, 2350132 (2022), https://doi.org/10.1142/S0217979223501321
A.S. Saidov, D.V. Saparov, S.N. Usmonov, K.G. Gaimnazarov, I.I. Maripov, IOP Conf. Ser. Mater. Sci. Eng. 1181} 012002 (2002), https://doi.org/10.1088/1757-899X/1181/1/012002
D. Zivkovic, D. Manasijevic, Z. Zivkovic, J. Therm. Anal. Calorim. 74, 85 (2003), https://doi.org/10.1023/A:1026373602352
A.A. Rusakov, X-Ray Radiography of Metals, Atomizdat, Moscow 1977 (in Russian)
I.L. Shul'pina, R.N. Kyutt, V.V. Ratnikov, I.A. Prokhorov, I.Z. Bezbakh, M.P. Shcheglov, Tech. Phys. 55, 537 (2010), https://doi.org/10.1134/S1063784210040183
V.K. Kiselev, S.V. Obolenskii, V.D. Skupov, Tech. Phys. 44, 724-725 (1999), https://doi.org/10.1134/1.1259453