Growing Perfect Single-Crystal Epitaxial Films of (Si2)1-x(GaN)x Solid Solutions on Si (111) Substrates from the Liquid Phase

Main Article Content

A.S. Saidov
Sh.N. Usmonov
M.U. Kalanov
D. Saparov
T.T. Ishniyazov
A.M. Akhmedov
M.B. Tagaev
A.Sh. Razzokov

Abstract

The technological capabilities of the method of liquid-phase epitaxy from a limited volume of Sn solution-melt for obtaining films of substitutional solid solution (Si2)1-x(GaN)x on Si (111) substrates are shown. The grown films had a single-crystal structure with (111) orientation,  n-type  conductivity  with  a resistivity  of  ρ ≈ 1.38 Ω ∙ cm, a carrier concentration of n ≈ 3.4 x 1016 cm-3, and a charge carrier mobility of µ ≈ 133 cm2/(V ∙ s). The relatively narrow width (full width at half maximum of 780 arcsec) and high intensity (2 x 105 pulses/s) of the main structural reflection (111)Si/GaN indicate a high degree of perfection of the crystal lattice of the epitaxial layer (Si2)1-x(GaN)x. The photosensitivity region of p-Si–n-(Si2)1-x(GaN)x heterostructures covers the photon energy range from 1.2 to 2.4 eV, with a maximum at 1.9 eV.

Article Details

How to Cite
[1]
A. Saidov, “Growing Perfect Single-Crystal Epitaxial Films of (Si2)1-x(GaN)x Solid Solutions on Si (111) Substrates from the Liquid Phase”, Acta Phys. Pol. A, vol. 148, no. 1, p. 29, Aug. 2025, doi: 10.12693/APhysPolA.148.29.
Section
Regular segment

References

M.A. Fakhri, A.A. Alwahib, E.T. Salim et al., Silicon 15, 7523 (2023), https://doi.org/10.1007/s12633-023-02528-x

L. Ravi, M.A. Rather, K.-L. Lin, C.-T. Wu, T.-Y. Yu, K.-Y. Lai, J.-I. Chyi, ACS Appl. Electron. Mater. 5, 146-154 (2023), https://doi.org/10.1021/acsaelm.2c01078

H.D. Jabbar, M.A. Fakhri, M.J. AbdulRazzaq, Silicon 14, 12837 (2022), https://doi.org/10.1007/s12633-022-01999-8

Danmei Zhao and Degang Zhao, J. Semicond. 39, 033006 (2018), https://doi.org/10.1088/1674-4926/39/3/033006

L. Wang, G. Walker, J. Chai, A. Iacopi, A. Fernandes, S. Dimitrijev, Sci. Rep. 5, 15423 (2015), https://doi.org/10.1038/srep15423

H. Aida, H. Takeda, N. Aota, K. Koyama, Jpn. J. Appl. Phys. 51, 016504 (2012), https://doi.org/10.1143/JJAP.51.016504

K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, G. Borghs, J. Electron. Mater. 35, 592 (2006), https://doi.org/10.1007/s11664-006-0105-1

J.H. Lee, K.S. Im, Crystals 11, 234 (2021), https://doi.org/10.3390/cryst11030234

A. Able, W. Wegscheider, K. Engl, J. Zweck, J. Cryst. Growth 276, 415 (2005), https://doi.org/10.1016/j.jcrysgro.2004.12.003

M. Mansor, R. Norhaniza, A. Shuhaimi, M.I. Hisyam, A. Omar, A. Williams, M.R.M. Hussin, Sci. Rep. 13, 8793 (2023), https://doi.org/10.1038/s41598-023-35677-5

A.S. Saidov, Sh.N. Usmonov, D.V. Saparov, Adv. Mater. Sci. Eng. 2019, 3932195 (2019), https://doi.org/10.1155/2019/3932195

A.S. Saidov, D.V. Saparov, S.N. Usmonov, A.S. Razzakov, M. Kalanov, Int. J. Mod. Phys. B 37, 2350132 (2022), https://doi.org/10.1142/S0217979223501321

A.S. Saidov, D.V. Saparov, S.N. Usmonov, K.G. Gaimnazarov, I.I. Maripov, IOP Conf. Ser. Mater. Sci. Eng. 1181} 012002 (2002), https://doi.org/10.1088/1757-899X/1181/1/012002

D. Zivkovic, D. Manasijevic, Z. Zivkovic, J. Therm. Anal. Calorim. 74, 85 (2003), https://doi.org/10.1023/A:1026373602352

A.A. Rusakov, X-Ray Radiography of Metals, Atomizdat, Moscow 1977 (in Russian)

I.L. Shul'pina, R.N. Kyutt, V.V. Ratnikov, I.A. Prokhorov, I.Z. Bezbakh, M.P. Shcheglov, Tech. Phys. 55, 537 (2010), https://doi.org/10.1134/S1063784210040183

V.K. Kiselev, S.V. Obolenskii, V.D. Skupov, Tech. Phys. 44, 724-725 (1999), https://doi.org/10.1134/1.1259453