Non-Gaussian Concentration Profile of Hydrogen Diffused in the Zinc Oxide Bulk Crystal
Main Article Content
Abstract
Hydrogen in ZnO is characteristic for its by high mobility and limited solubility; consequently, the classical Gaussian broadening expected for diffusion from a localized source is not observed after post-implantation annealing. In this work, c-axis ZnO single crystals were implanted with 1 MeV H+ (fluence 1 x 1016 cm-2), annealed in flowing O2 at 300°C and 600°C for 15–30 min, and their depth profiles were quantified by secondary ion mass spectrometry. The profiles were observed to evolve in a non-Gaussian manner. At 300°C the peak narrows and increases, whereas at 600°C the near-peak region is depleted. A long, asymmetric tail and a surface-proximal excess are developed, indicating that rapid out-diffusion, trapping, and limited solubility govern the evolution rather than Fickian spreading. The diffusion coefficient D at 600°C was extracted directly from the difference between the initial and annealed profiles. A semi-infinite model with an absorbing surface, with no need to assume a Gaussian initial profile, was applied. Reduction in the overall content after 15 and 30 min at 600°C yields the value of D = 6 x 10-9 cm2/s. These results provide a consistent framework for extracting diffusion parameters from non-Gaussian profiles in hydrogenated ZnO, highlighting the dominant role of surface exchange, trapping, and low equilibrium solubility in shaping the measured hydrogen distributions.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
C. Van de Walle, Phys. Rev. Lett. 85(5), 1012 (2000), https://doi.org/10.1103/PhysRevLett.85.1012
S.F.J. Cox, E.A. Davis et al., Phys. Rev. Lett. 86(12), 2601 (2001), https://doi.org/10.1103/PhysRevLett.86.2601
E. Mollwo, Zeitschrift fur Physik 138, 478 (1954), https://doi.org/10.1007/BF01340694
D.G. Thomas, J.J. Lander, J. Chem. Phys. 25, 1136 (1956), https://doi.org/10.1063/1.1743165
J. Koßmann, C. Hattig, Phys. Chem. Chem. Phys. 14, 16392 (2012), https://doi.org/10.1039/c2cp42928d
H.-H. Nahm, C.H. Park, Y.-S. Kim, Sci. Rep. 2, 4124 (2014), https://doi.org/10.1038/srep04124
Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Phys. Rev. B 71, 115213 (2005), https://doi.org/10.1103/PhysRevB.71.115213
S.G. Koch, E.V. Lavrov, J. Weber, Phys. Rev. B 89, 235203 (2014), https://doi.org/10.1103/PhysRevB.89.235203
W. Beyer, U. Breuer, F. Hamelmann, J. Hüpkes, A. Stärk, H. Stiebig, U. Zastrow, Mater. Res. Soc. Symp. Proc. 1165, M05-24 (2009), https://doi.org/10.1557/PROC-1165-M05-24
Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, Int. J. Hydrogen Energy 29(3), 323 (2004), https://doi.org/10.1016/S0360-3199(03)00213-1
M.D. McCluskey, S.J. Jokela, W.M. Hlaing, Physica B 376, 690 (2006), https://doi.org/10.1016/j.physb.2005.12.173
E. Guziewicz, W. Woźniak, S. Mishra, R. Jakieła, M. Guziewicz, V.Y. Ivanov, E. Łusakowska, R. Schifano, Phys. Status Solidi A 218, 2000318 (2021), https://doi.org/10.1002/pssa.202000318
K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, J.M. Zavada, Appl. Phys. Lett. 82, 385 (2003), https://doi.org/10.1063/1.1539927
E.V. Monakhov, J. S. Christensen, K. Maknys, B.G. Svensson, A.Yu. Kuznetsov, Appl. Phys. Lett. 87, 191910 (2005), https://doi.org/10.1063/1.2128059
K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, S.O. Kucheyev, C. Jagadish, J.S. Williams, R.G. Wilson, J.M. Zavada, Appl. Phys. Lett. 81, 3996 (2002), https://doi.org/10.1063/1.1524033
B. Theys, V. Sallet, F. Jomard, A. Lusson, J.-F. Rommelučre, Z. Teukam, J. Appl. Phys. 91, 3922 (2002), https://doi.org/10.1063/1.1452778
K. Ip, M.E. Overberg, Y.W. Heo, et al., Solid-State Electronics 47, 2255 (2003), https://doi.org/10.1016/S0038-1101(03)00207-7
M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, S.-J. Park, Appl. Phys. Lett. 91, 212102 (2007), https://doi.org/10.1063/1.2816119
M.G. Wardle, J.P. Goss, P.R. Briddon, Phys. Rev. Lett. 96, 205504 (2006), https://doi.org/10.1103/PhysRevLett.96.205504
J. Bang, K.J. Chang, Appl. Phys. Lett. 92, 132109 (2008), https://doi.org/10.1063/1.2906379
N.H. Nickel, Phys. Rev. B 73, 195204 (2006), https://doi.org/10.1103/PhysRevB.73.195204
J. Hu, H.Y. He, B.C. Pan, J. Appl. Phys. 103, 113706 (2008), https://doi.org/10.1063/1.2939257
K.M.H. Johansen, J.S. Christensen, E.V. Monakhov, A.Yu. Kuznetsov, B.G. Svensson, Mater. Res. Soc. Symp. Proc. 1035, L03-10 (2008), https://doi.org/10.1557/PROC-1035-L03-10
W.H. Doh, P.C. Roy, C.M. Kim, Langmuir 26(21), 16278 (2010), https://doi.org/10.1021/la101369r
L. Vines, R. Schifano, M. Schofield, B.G. Svensson, Phys. Scr. T148, 014005 (2012), https://doi.org/10.1088/0031-8949/2012/T148/014005
J.-K. Park, K.-W. Lee, C.-E. Lee, Solid State Communications 165, 19 (2013), https://doi.org/10.1016/j.ssc.2013.04.019
J. Cízek, F. Lukác, M. Vlcek, O. Melikhova, F. Traeger, D. Rogalla, H.-W. Becker, Journal of Alloys and Compounds 580, S51 (2013), https://doi.org/10.1016/j.jallcom.2013.02.075
Md.A. Motin, P.C. Roy, C.M. Kim, Phys. Status Solidi B 253(8), 1649 (2016), https://doi.org/10.1002/pssb.201600062
K.S. Chan, L. Vines, K.M. Johansen, E.V. Monakhov, J.D. Ye, P. Parkinson, C. Jagadish, B.G. Svensson, J. Wong-Leung, J. Appl. Phys. 114, 083111 (2013), https://doi.org/10.1063/1.4819216
S. Nagar, S.K. Gupta, S. Chakrabarti, J. Lumin. 153, 307 (2014), https://doi.org/10.1016/j.jlumin.2014.03.052
M.-H. Du, K. Biswas, Phys. Rev. Lett. 106, 115502 (2011), https://doi.org/10.1103/PhysRevLett.106.115502
R. Schifano, R. Jakieła, A. Galeckas, K. Kopalko, F. Herklotz, K.M.H. Johansen, L. Vines, J. Appl. Phys. 126, 125707 (2019), https://doi.org/10.1063/1.5115597
R. Jakieła, Acta Phys. Pol. A 136(6), 916 (2019), https://doi.org/10.12693/APhysPolA.136.916
K.M. Johansen, J.S. Christensen, E.V. Monakhov, A.Yu. Kuznetsov, B.G. Svensson, Appl. Phys. Lett. 93, 152109 (2008), https://doi.org/10.1063/1.3001605
A. Barcz, M. Kozubal, R. Jakieła, J. Ratajczak, J. Dyczewski, K. Golaszewska, T. Wojciechowski, G.K. Celler, J. Appl. Phys. 115, 223710 (2014), https://doi.org/10.1063/1.4882996
C.G. Van de Walle, J. Neugebauer, Nature 423, 626 (2003), https://doi.org/10.1038/nature01665