Non-Gaussian Concentration Profile of Hydrogen Diffused in the Zinc Oxide Bulk Crystal

Main Article Content

R. Jakieła
A. Barcz

Abstract

Hydrogen in ZnO is characteristic for its by high mobility and limited solubility; consequently, the classical Gaussian broadening expected for diffusion from a localized source is not observed after post-implantation annealing. In this work, c-axis ZnO single crystals were implanted with 1 MeV H+ (fluence 1 x 1016 cm-2), annealed in flowing O2 at 300°C and 600°C for 15–30 min, and their depth profiles were quantified by secondary ion mass spectrometry. The profiles were observed to evolve in a non-Gaussian manner. At 300°C the peak narrows and increases, whereas at 600°C the near-peak region is depleted. A long, asymmetric tail and a surface-proximal excess are developed, indicating that rapid out-diffusion, trapping, and limited solubility govern the evolution rather than Fickian spreading. The diffusion coefficient D at 600°C was extracted directly from the difference between the initial and annealed profiles. A semi-infinite model with an absorbing surface, with no need to assume a Gaussian initial profile, was applied. Reduction in the overall content after 15 and 30 min at 600°C yields the value of D = 6 x 10-9 cm2/s. These results provide a consistent framework for extracting diffusion parameters from non-Gaussian profiles in hydrogenated ZnO, highlighting the dominant role of surface exchange, trapping, and low equilibrium solubility in shaping the measured hydrogen distributions.


 

Article Details

How to Cite
[1]
R. Jakieła and A. Barcz, “Non-Gaussian Concentration Profile of Hydrogen Diffused in the Zinc Oxide Bulk Crystal”, Acta Phys. Pol. A, vol. 148, no. 4, p. 267, Dec. 2025, doi: 10.12693/APhysPolA.148.267.
Section
Regular segment

References

C. Van de Walle, Phys. Rev. Lett. 85(5), 1012 (2000), https://doi.org/10.1103/PhysRevLett.85.1012

S.F.J. Cox, E.A. Davis et al., Phys. Rev. Lett. 86(12), 2601 (2001), https://doi.org/10.1103/PhysRevLett.86.2601

E. Mollwo, Zeitschrift fur Physik 138, 478 (1954), https://doi.org/10.1007/BF01340694

D.G. Thomas, J.J. Lander, J. Chem. Phys. 25, 1136 (1956), https://doi.org/10.1063/1.1743165

J. Koßmann, C. Hattig, Phys. Chem. Chem. Phys. 14, 16392 (2012), https://doi.org/10.1039/c2cp42928d

H.-H. Nahm, C.H. Park, Y.-S. Kim, Sci. Rep. 2, 4124 (2014), https://doi.org/10.1038/srep04124

Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Phys. Rev. B 71, 115213 (2005), https://doi.org/10.1103/PhysRevB.71.115213

S.G. Koch, E.V. Lavrov, J. Weber, Phys. Rev. B 89, 235203 (2014), https://doi.org/10.1103/PhysRevB.89.235203

W. Beyer, U. Breuer, F. Hamelmann, J. Hüpkes, A. Stärk, H. Stiebig, U. Zastrow, Mater. Res. Soc. Symp. Proc. 1165, M05-24 (2009), https://doi.org/10.1557/PROC-1165-M05-24

Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, Int. J. Hydrogen Energy 29(3), 323 (2004), https://doi.org/10.1016/S0360-3199(03)00213-1

M.D. McCluskey, S.J. Jokela, W.M. Hlaing, Physica B 376, 690 (2006), https://doi.org/10.1016/j.physb.2005.12.173

E. Guziewicz, W. Woźniak, S. Mishra, R. Jakieła, M. Guziewicz, V.Y. Ivanov, E. Łusakowska, R. Schifano, Phys. Status Solidi A 218, 2000318 (2021), https://doi.org/10.1002/pssa.202000318

K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, J.M. Zavada, Appl. Phys. Lett. 82, 385 (2003), https://doi.org/10.1063/1.1539927

E.V. Monakhov, J. S. Christensen, K. Maknys, B.G. Svensson, A.Yu. Kuznetsov, Appl. Phys. Lett. 87, 191910 (2005), https://doi.org/10.1063/1.2128059

K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, S.O. Kucheyev, C. Jagadish, J.S. Williams, R.G. Wilson, J.M. Zavada, Appl. Phys. Lett. 81, 3996 (2002), https://doi.org/10.1063/1.1524033

B. Theys, V. Sallet, F. Jomard, A. Lusson, J.-F. Rommelučre, Z. Teukam, J. Appl. Phys. 91, 3922 (2002), https://doi.org/10.1063/1.1452778

K. Ip, M.E. Overberg, Y.W. Heo, et al., Solid-State Electronics 47, 2255 (2003), https://doi.org/10.1016/S0038-1101(03)00207-7

M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, S.-J. Park, Appl. Phys. Lett. 91, 212102 (2007), https://doi.org/10.1063/1.2816119

M.G. Wardle, J.P. Goss, P.R. Briddon, Phys. Rev. Lett. 96, 205504 (2006), https://doi.org/10.1103/PhysRevLett.96.205504

J. Bang, K.J. Chang, Appl. Phys. Lett. 92, 132109 (2008), https://doi.org/10.1063/1.2906379

N.H. Nickel, Phys. Rev. B 73, 195204 (2006), https://doi.org/10.1103/PhysRevB.73.195204

J. Hu, H.Y. He, B.C. Pan, J. Appl. Phys. 103, 113706 (2008), https://doi.org/10.1063/1.2939257

K.M.H. Johansen, J.S. Christensen, E.V. Monakhov, A.Yu. Kuznetsov, B.G. Svensson, Mater. Res. Soc. Symp. Proc. 1035, L03-10 (2008), https://doi.org/10.1557/PROC-1035-L03-10

W.H. Doh, P.C. Roy, C.M. Kim, Langmuir 26(21), 16278 (2010), https://doi.org/10.1021/la101369r

L. Vines, R. Schifano, M. Schofield, B.G. Svensson, Phys. Scr. T148, 014005 (2012), https://doi.org/10.1088/0031-8949/2012/T148/014005

J.-K. Park, K.-W. Lee, C.-E. Lee, Solid State Communications 165, 19 (2013), https://doi.org/10.1016/j.ssc.2013.04.019

J. Cízek, F. Lukác, M. Vlcek, O. Melikhova, F. Traeger, D. Rogalla, H.-W. Becker, Journal of Alloys and Compounds 580, S51 (2013), https://doi.org/10.1016/j.jallcom.2013.02.075

Md.A. Motin, P.C. Roy, C.M. Kim, Phys. Status Solidi B 253(8), 1649 (2016), https://doi.org/10.1002/pssb.201600062

K.S. Chan, L. Vines, K.M. Johansen, E.V. Monakhov, J.D. Ye, P. Parkinson, C. Jagadish, B.G. Svensson, J. Wong-Leung, J. Appl. Phys. 114, 083111 (2013), https://doi.org/10.1063/1.4819216

S. Nagar, S.K. Gupta, S. Chakrabarti, J. Lumin. 153, 307 (2014), https://doi.org/10.1016/j.jlumin.2014.03.052

M.-H. Du, K. Biswas, Phys. Rev. Lett. 106, 115502 (2011), https://doi.org/10.1103/PhysRevLett.106.115502

R. Schifano, R. Jakieła, A. Galeckas, K. Kopalko, F. Herklotz, K.M.H. Johansen, L. Vines, J. Appl. Phys. 126, 125707 (2019), https://doi.org/10.1063/1.5115597

R. Jakieła, Acta Phys. Pol. A 136(6), 916 (2019), https://doi.org/10.12693/APhysPolA.136.916

K.M. Johansen, J.S. Christensen, E.V. Monakhov, A.Yu. Kuznetsov, B.G. Svensson, Appl. Phys. Lett. 93, 152109 (2008), https://doi.org/10.1063/1.3001605

A. Barcz, M. Kozubal, R. Jakieła, J. Ratajczak, J. Dyczewski, K. Golaszewska, T. Wojciechowski, G.K. Celler, J. Appl. Phys. 115, 223710 (2014), https://doi.org/10.1063/1.4882996

C.G. Van de Walle, J. Neugebauer, Nature 423, 626 (2003), https://doi.org/10.1038/nature01665