Epitaxy and Structural, Electrical, and Optical Characterization of Pb1-xSnxTe Semiconductor Layers Grown by MBE on CdTe/GaAs Hybrid Substrates

Main Article Content

W. Wołkanowicz
P. Dziawa
M. Zięba
R. Minikayev
A. Sulich
E. Łusakowska
A. Reszka
K. Dybko
T. Andrearczyk
M. Szot
L. Kowalczyk
A. Witowski
J. Polaczyński
W. Zaleszczyk
T. Wojtowicz
T. Story

Abstract

Pb1-xSnxTe is a IV–VI substitutional semiconductor alloy exhibiting excellent thermoelectric and mid-infrared optoelectronic properties controlled by the tin content. In recent years, this material has gained additional interest due to discovery of a topological crystalline insulator state for large values of x. High-quality Pb1-xSnxTe crystals can be grown both as bulk materials and thin layers. However, due to its high thermal expansion and lattice mismatch with commercial semiconductor substrates such as Si or GaAs, the choice of substrates for epitaxial growth of Pb1-xSnxTe layers is very limited, and thermally matched cleaved BaF2 (111) substrates have typically been used. In this article, we report the growth of Pb1-xSnxTe (x = 0–1) layers by molecular beam epitaxy using original hybrid substrates made of a  few  micrometer  thick  CdTe  layer  grown on commercial 2 in GaAs (001) wafers. The basic structural, electrical, and optical characteristics of the grown structures are presented, demonstrating the high crystalline quality of the Pb1-xSnxTe layers with a rock-salt structure, with a lattice parameter exhibiting Vegard law in the entire composition range, p-type electrical conductivity with hole concentration varying by three orders of magnitude from PbTe to SnTe, and a mid-infrared optical spectrum dominated by plasma reflectivity and interference effects. 

Article Details

How to Cite
[1]
W. Wołkanowicz, “Epitaxy and Structural, Electrical, and Optical Characterization of Pb1-xSnxTe Semiconductor Layers Grown by MBE on CdTe/GaAs Hybrid Substrates”, Acta Phys. Pol. A, vol. 148, no. 3, p. 257, Dec. 2025, doi: 10.12693/APhysPolA.148.257.
Section
Regular segment

References

Yu.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides, Ed. L. Stil'bans, Springer, New York 1970, https://doi.org/10.1007/978-1-4684-8607-0

G. Nimtz, B. Schlicht, in: Narrow-Gap Semiconductors, Vol. 98, Springer, Berlin, Heidelberg 1983, p. 1, https://doi.org/10.1007/BFb0044920

G. Springholz, in: Lead Chalcogenides Physics and Applications, Ed. D.R. Khokhlov, Taylor and Francis Books, New York 2003, https://doi.org/10.1201/9780203749081

P. Dziawa, B.J. Kowalski, K. Dybko et al., Nat. Mater. 11,} 1023 (2012), https://doi.org/10.1038/NMAT3449

Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8, 800 (2012), https://doi.org/10.1038/NPHYS2442

S.-Y. Xu, C. Liu, N. Alidoust et al., Nat. Commun. 3, 1192 (2012), https://doi.org/10.1038/ncomms2191

A. Łusakowski, P. Bogusławski, T. Story, Phys. Rev. B 98, 125203 (2018), https://doi.org/10.1103/PhysRevB.98.125203

Z. Wang, Q. Liu, J.-W. Luo, A. Zunger, Mater. Horiz. 6, 2124 (2019), https://doi.org/10.1039/C9MH00574A

X.J. Tan, H.Z. Shao, J. He, G.Q. Liu, J.T. Xu, J. Jiong, H.C. Jiang, Phys. Chem. Chem. Phys. 18, 7141 (2016), https://doi.org/10.1039/C5CP07620J

A. Szczerbakow, K. Durose, Prog. Cryst. Growth Charact. Mater. 51, 81 (2005), https://doi.org/10.1016/j.pcrysgrow.2005.10.004

A. Szczerbakow, H. Berger, J. Cryst. Growth 139, 172 (1994), https://doi.org/10.1016/0022-0248(94)90042-6

A. Sulich, E. Łusakowska, W. Wołkanowicz, P. Dziawa, J. Sadowski, B. Taliashvili, T. Wojtowicz, T. Story, J.Z. Domagała, J. Mater. Chem. C 10, 3139 (2024), https://doi.org/10.1039/D1TC05733B

R. Ishikawa, T. Yamaguchi, Y. Ohtaki, R. Akiyama, S. Kuroda, J. Cryst. Growth 453, 124 (2016), https://doi.org/10.1016/j.jcrysgro.2016.08.027

M. Kobayashi, S. Nan, J. Cryst. Growth 628, 127531 (2024), https://doi.org/10.1016/j.jcrysgro.2023.127531

D. Śnieżek, J. Wróbel, M. Kojdecki, C. Śliwa, S. Schreyeck, K. Brunner, L.W. Molenkamp, G. Karczewski, J. Wróbel, Phys. Rev. B 107, 045103 (2023), https://doi.org/10.1103/PhysRevB.107.045103

D. Śnieżek, C. Śliwa, K. Dybko, J. Wróbel, P. Dziawa, T. Wojtowicz, T. Story, J. Wróbel, "Signatures of hydrodynamic flow of topological carriers in SnTe multi-terminal nanowires", 2025, https://arxiv.org/abs/2503.07039

P. Sidorczak, W. Wołkanowicz, A. Kaleta et al., "PbTe/SnTe heterostructures - candidate platform for studying spin-triplet superconductivity", 2024, https://arxiv.org/abs/2406.04447

J.M. Głuch, M. Szot, S. Chusnutdinow, G. Karczewski, Appl. Phys. Lett. 126, 121101 (2025), https://doi.org/10.1063/5.0250132

M. Woźny, W. Szuszkiewicz, M. Dyksik, M. Motyka, A. Szczerbakow, W. Bardyszewski, T. Story, J. Cebulski, New J. Phys. 26, 063008 (2024), https://doi.org/10.1088/1367-2630/ad4fba

A.A. Reijnders, J. Hamilton, V. Britto, J.-B. Brubach, P. Roy, Q.D. Gibson, R.J. Cava, K.S. Burch, Phys. Rev. B 90, 235144 (2014), https://doi.org/10.1103/PhysRevB.90.235144

N. Anand, S. Buvaev, A.F. Hebard, D.B. Tanner, Z. Chen, Z. LI, K. Choudhary, A.B. Sinnott, G. Guo, C. Martin, Phys. Rev. B 90, 235143 (2014), https://doi.org/10.1103/PhysRevB.90.235143