Experimental and Theoretical Studies of Hybrid (C3N2H5)2SbF5 Crystal With the Phase Transition
Main Article Content
Abstract
An organic–inorganic compound (C3N2H5)2SbF5 — bis(imidazolium)pentafluoroantimanate — was investigated. This crystal undergoes a structural phase transition. The phase transition was studied with the use of the infrared spectra of powdered crystal suspended in Nujol and Fluorolube oil in a wide range of internal vibration of the (C3N2H5)2+ and SbF52- ions (i.e., from 4000 to 400 cm-1) in the temperature range from 183 K (154 K in Fluorolube) to 300 K. The room temperature infrared spectrum in KBr and the Raman spectrum were achieved. The infrared measurement results showed a phase transition at 223 K (upon cooling). Temperature-depended changes of wavenumber, half-width, a center of gravity, and bands intensity were analysed in order to describe the contribution of cationic and anionic dynamics to the phase-transition mechanisms. Density functional theory formalism was applied to theoretical studies of normal vibration wavenumbers. For the optimized structure, harmonic frequencies and infrared intensities with Raman activities were calculated by the hybrid tree-parameter density functional model. Hydrogen bonds for the theoretical moiety were found. The results were compared with the experimental data. Electrostatic charges for the investigated molecules were calculated using the natural bond orbital method and Mulliken methods.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R.R. Ryan, D.T. Cromer, Inorg. Chem. 11, 2322 (1972), https://doi.org/10.1021/ic50116a006
A. Ingram, Z. Czapla, S. Wacke, Curr. Appl. Phys. 16, 278 (2016), https://doi.org/10.1016/j.cap.2015.12.013
B. Andriyevsky, Z. Czapla, D. Podsiadła, Mater. Chem. Phys 205, 452 (2018), https://doi.org/10.1016/j.matchemphys.2017.11.052
N. Nakamura, Z. Naturforsch. A 41, 243 (1986)
J. Przesławski, J. Furtak, Z. Czapla, Ferroelectrics 337, 139 (2006), https://doi.org/10.1080/00150190600716424
Z. Czapla, S. Dacko, Ferroelectrics 140, 271 (1993), https://doi.org/10.1080/00150199308008295
B. Andriyevsky, Z. Czapla, V. Stadnyk, Acta Phys. Pol. A 87, 611 (1995), https://doi.org/10.12693/APhysPolA.87.611
K. Shalini, P.K. Dharma, N. Kumar, Der Chemica Sinica 1, 36 (2010), https://www.imedpub.com/articles-pdfs/imidazole-and-its-biological-activities-a-review.pdf
M. Borgers, Rev. Infect. Dis. 2, 520 (1980), https://doi.org/10.1093/clinids/2.4.520
R. Czoik, A. Heintz, E. John, W. Marczak, Acta Phys. Pol. A 114, A-51 (2008), https://doi.org/10.12693/APhysPolA.114.A-51
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005), https://doi.org/10.1524/zkri.220.5.567.65075
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865
K. Refson, S.J. Clark, P.R. Tulip, Phys. Rev. B 73, 155114-1 (2006), https://doi.org/10.1103/PhysRevB.73.155114
M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09 (now Gaussian 16), Gaussian Inc., Wallingford (CT) 2016, https://gaussian.com/gaussian16/
F.H. Allen, Acta Crystallogr. Sect. B Struct. Sci. 58, 380 (2002), https://doi.org/10.1107/S0108768102003890
C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 171 (2016), https://doi.org/10.1107/S2052520616003954
A.G. Yurieva, O.K. Poleshchuk, V.D. Filimonov, J. Struct. Chem. 49, 548 (2008), https://doi.org/10.1007/s10947-008-0073-9
K.K. Irikura, R.D. Johnson III, R.N. Kacker, J. Phys. Chem. A. 109, 8430 (2005), https://doi.org/10.1021/jp052793n
I.M. Alecu, J. Zheng, Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput. 6, 2872 (2010), https://doi.org/10.1021/ct100326h
R. Dennington, T. Keith, J. Millam, GaussView, Version 5., Semichem Inc., Shawnee Mission (KS) 2009
D. Jayatilaka, S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.A. Spackman, Acta Crystallogr. Sect. A Found. Crystallogr. 62, 90 (2006), https://doi.org/10.1107/s0108767306098199
J. Baran, Z. Czapla, M.K. Drozd, M.M. Ilczyszyn, M. Marchewka, H. Ratajczak, J. Mol. Struct. 403, 17 (1997), https://doi.org/10.1016/S0022-2860(96)09399-4
R. Ramasamy, Am. J. Phys. 8, 51 (2015), https://doi.org/10.52853/18291171
T.J. Lane, I. Nakagawa, J.L. Walter, A.J. Kandathil, Inorg. Chem. 1, 267 (1962), https://doi.org/10.1021/ic50002a014
S.J. Archer, T.P.E. Auf der Heyde, G.A. Foulds, D.A. Thornton, Transition Met. Chem. 7, 59 (1982), https://doi.org/10.1007/BF00623811
G. Giester, V.V. Ghazaryan, M. Fleck, G.S. Tonoyan, A.M. Petrosyan, J. Mol. Struct. 1182, 317 (2019), https://doi.org/10.1016/j.molstruc.2019.01.068
T. Birchall, P.A.W. Dean, R.J. Gillespie, J. Chem. Soc. A 1971, 1778 (1971), https://doi.org/10.1039/J19710001777
T. Birchall, P.A.W. Dean, B. Della Valle, R.J. Gillespie, Can. J. Chem. 51, 667 (1973)
B. Bonnet, G. Mascherpa, Inorg. Chem. 19, 785 (1980), https://doi.org/10.1021/ic50205a045
R. Infante-Castillo, L.A. Rivera-Montalvo, S.P. Hernández-Rivera, J. Mol. Struct. 877, 10 (2008), https://doi.org/10.1016/j.molstruc.2007.07.012
L.E. Alexander, I.R. Beattie, J. Chem. Soc. A 1971, 3092 (1971), https://doi.org/10.1039/J19710003091
E.R. Talaty, S. Raja, V.J. Storhaug, Andreas Dölle, W.R. Carter, J. Phys. Chem. B 108, 13177 (2004), https://doi.org/10.1021/jp040199s
S. Schroetter, D. Bougeard, Ber. Bunsenges. Phys. Chem. 91, 1217 (1987), https://doi.org/10.1002/bbpc.19870911125
J. Baran, M. Drozd, T. Lis, H. Ratajczak, J. Mol. Struct. 372, 145 (1995), https://doi.org/10.1016/0022-2860(95)08980-2
V.E. Borisenko, Yu.A. Zavjalova, T.G. Tretjakova, Z.S. Kozlova, A. Koll, J. Mol. Liq. 109, 125 (2004), https://doi.org/10.1016/j.molliq.2003.06.003
W.G. Fateley, F.R. Dollish, N.T. McDevitt, F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method; Wiley-Interscience, A Division of John Wiley & Sons, New York 1972
Z. Mielke, M. Wierzejewska-Hnat, M. Ilczyszyn, J. Baran, Ćwiczenia Laboratoryjne z Fizyki Chemicznej, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 1995
S. DeBeer, F. Neese, in: Comprehensive Inorganic Chemistry II, 2nd ed., Elsevier 2013, https://doi.org/10.1016/B978-0-08-097774-4.00918-9
M. Drozd, Spectrochim. Acta A Mol. Biomol. Spectrosc. 65, 1069 (2006), https://doi.org/10.1016/j.saa.2006.02.007
J. Oszust, J. Baran, A. Pietraszko, M. Drozd, Pol. J. Chem. 83, 835 (2009)
M. Drozd, J. Baran, Spectrochim. Acta A Mol. Biomol. Spectrosc. 64, 73 (2006), https://doi.org/10.1016/j.saa.2005.07.001
M. Trzebiatowska-Gusowska, A. Gągor, J. Baran, M. Drozd, J. Raman Spectrosc. 40, 315 (2009), https://doi.org/10.1002/jrs.2127
N. Sheppard, Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, 1450 (1995), https://doi.org/10.1016/s0584-8539(99)80003-8
M. Drozd, D. Dudzic, Spectrochim. Acta A Mol. Biomol. Spectrosc. 89, 243 (2012), https://doi.org/10.1016/j.saa.2011.12.069
J.A.K. Howard, V.J. Hoy, D. O'Hagan, G.T. Smith, Tetrahedron 52, 12613 (1996), https://doi.org/10.1016/0040-4020(96)00749-1
M. Drozd, M. Daszkiewicz, J. Mol. Struct. 1161, 383 (2018), https://doi.org/10.1016/j.molstruc.2018.02.077
E.D. Glendening, C.R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2, 1 (2012), https://doi.org/10.1002/wcms.51
M. Drozd, D. Dudzic, A. Pietraszko, Spectrochim. Acta A Mol. Biomol. Spectrosc. 105, 135 (2013), https://doi.org/10.1016/j.saa.2012.12.013
M. Drozd, M.K. Marchewka, J. Mol. Struct. THEOCHEM. 716, 175 (2005), https://doi.org/10.1016/j.theochem.2004.11.020
G.R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam 1989
M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19 (2009), https://doi.org/10.1039/B818330A