The Raman Spectrum and High Lattice Thermal Conductivity of Ternary Layered Boride Cr3AlB4

Main Article Content

S. Wang
B. Liu
J. Song

Abstract

The Raman spectrum and lattice thermal conductivity of the ternary layered boride Cr3AlB4  were investigated using first-principles methods in this study. The results of the electronic band structure indicate that Cr3AlB4  exhibits metallic properties. Cr3AlB4 also exhibits 9 Raman-active and 12 infrared-active modes. Low- and mid-frequency motions are dominated by Cr and Al displacements, whereas high-frequency modes arise chiefly from B-atom vibrations. The computed lattice thermal conductivity of Cr3AlB4 is 87.9 W/(m K); the phonon lifetime is long at low frequencies, while the overall group velocity remains modest. However, the effects of anharmonic vibrations are minimal, as indicated by a small Grüneisen parameter, and the anharmonic scattering rate is also low due to a limited weighted phase space. The elevated thermal conductivity of Cr3AlB4  arises from its compact crystal structure, strong covalent bonds, minimal anharmonic vibration effects, and fewer phonon scattering channels.

Article Details

How to Cite
[1]
S. Wang, B. Liu, and J. Song, “The Raman Spectrum and High Lattice Thermal Conductivity of Ternary Layered Boride Cr3AlB4”, Acta Phys. Pol. A, vol. 148, no. 3, p. 228, Dec. 2025, doi: 10.12693/APhysPolA.148.228.
Section
Regular segment

References

C. Roy, S. Mondal, P. Banerjee, S. Bhattacharyya, Adv. Powder Technol. 34, 103983 (2023), https://doi.org/10.1016/j.apt.2023.103983

B. Demir, E. I. Duden, E. Ayas, J. Alloy. Compd. 953, 170115 (2023), https://doi.org/10.1016/j.jallcom.2023.170115

A.Y. Potanin, E.A. Bashkirov, A.Y. Karpenkov, E.A. Levashov, Materialia 33, 101993 (2024), https://doi.org/10.1016/j.mtla.2023.101993

J. Słomiński, S. Komarek, D. Zientara, D. Madej, A. Gubernat, Ceram. Int. 49, 30845 (2023), https://doi.org/10.1016/j.ceramint.2023.07.042

Q. Zhang, Y. Zhou, X. San, W. Li, Y. Bao, Q. Feng, S. Grasso, C. Hu, J. Adv. Ceram. 11, 1764 (2022), https://doi.org/10.1007/s40145-022-0646-7

A. Madhubala, S.G.K. Manikandan, R.U. Rani, M. Kamaraj, J. Alloy. Compd. 1007, 176353 (2024), https://doi.org/10.1016/j.jallcom.2024.176353

J.A. Mohammed Abdulwahed, Acta Phys. Pol. A 143, 25 (2023), https://doi.org/10.12693/APhysPolA.143.25

V. Sharma, R. Barua, Materials 17, 3886 (2024), https://doi.org/10.3390/ma17163886

S. Mondal, C. Roy, S. Bhattacharyya, Mater. Today Chem. 37, 102004 (2024), https://doi.org/10.1016/j.mtchem.2024.102004

L. Benahmedi, A. Besbes, R. Djelti, Acta Phys. Pol. A 147, 393 (2025), https://doi.org/10.12693/aphyspola.147.393

V. Natu, S.S. Kota, M.W. Barsoum, J. Eur. Ceram. Soc. 40, 305 (2020), https://doi.org/10.1016/j.jeurceramsoc.2019.09.040

M. Fodil, O. Baraka, A. Mokadem, Acta Phys. Pol. A 146, 143 (2024), https://doi.org/10.12693/APhysPolA.146.143

B. Zhao, X. Wang, L. Yu, Y. Liu, X. Chen, B. Yang, G. Yang, S. Zhang, L. Gu, X. Liu, Adv. Funct. Mater. 32, (2021), https://doi.org/10.1002/adfm.202110872

Z. Guo, X. Jiang, J. Phys. Chem. Solids 139, 109330 (2020), https://doi.org/10.1016/j.jpcs.2019.109330

Q. Liang, S. Dwaraknath, K.A. Persson, Sci. Data 6, (2019), https://doi.org/10.1038/s41597-019-0138-y

M.N. Popov, J. Spitaler, V.K. Veerapandiyan, E. Bousquet, J. Hlinka, M. Deluca, Npj Comput. Mater. 6, (2020), https://doi.org/10.1038/s41524-020-00395-3

S. Wang, L. Chen, H. Hao, C. Qiao, J. Song, C. Cui, B. Liu, Sci. Rep. 14, 15030 (2024), https://doi.org/10.1038/s41598-024-65980-8

S. Mandal, I. Maity, A. Das, M. Jain, P.K. Maiti, Phys. Chem. Chem. Phys. 24, 13860 (2022), https://doi.org/10.1039/d2cp01304e

A.A. Yahaya, W.A. Yahya, A.S. Ahmed, A.A. Sholagberu, Acta Phys. Pol. A 145, 194 (2024), https://doi.org/10.12693/APhysPolA.145.194

B. Xu, Z. Shi, H. Yin, R. Zhang, Solid State Commun. 356, 114971 (2022), https://doi.org/10.1016/j.ssc.2022.114971

S.O. Akande, B. Samanta, C. Sevik, D. Çakir, Phys. Rev. Appl. 20, 044064 (2023), https://doi.org/10.1103/PhysRevApplied.20.044064

J. Tao, N. Arshad, G. Maqsood, M.S. Asghar, F. Zhu, L. Lin, M.S. Irshad, X. Wang, Small 20, (2024), https://doi.org/10.1002/smll.202401603

J.Y. Kim, H. Zhang, J. Xi, I. Szlufarska, Chem. Mater. 34, 7807 (2022), https://doi.org/10.1021/acs.chemmater.2c01291

X.-H. Li, C.-H. Xing, H.-L. Cui, R.-Z. Zhang, J. Phys. Chem. Solids 126, 65 (2019), https://doi.org/10.1016/j.jpcs.2018.10.032

R. Wang, Y. Xiong, J. Sun, Y. Zhou, G. Song, G. Chen, X. Liu, Appl. Phys. Lett. 127, 022202 (2025), https://doi.org/10.1063/5.0277012

H. Malekpour, A.A. Balandin, J. Raman Spectrosc. 49, 106 (2017), https://doi.org/10.1002/jrs.5230

A.S. Atalay, B. Derin, M.F. Khanghah, Comput. Condens. Matter 32, e00731 (2022), https://doi.org/10.1016/j.cocom.2022.e00731

S. Berri, N. Bouarissa, Acta Phys. Pol. A 146, 270 (2024), https://doi.org/10.12693/APhysPolA.146.270

S. Dahri, A. Jabar, L. Bahmad, L.B. Drissi, R.A. Laamara, J. Mol. Graph. Model. 139, 109075 (2025), https://doi.org/10.1016/j.jmgm.2025.109075

Q. Wei, Q. Wang, X. Xie, X. Jia, Z. Wu, H. Yan, M. Zhang, M. Hu, X. Zhu, Acta Phys. Pol. A 145, 71 (2024), https://doi.org/10.12693/APhysPolA.145.71

L. Zhichao, M. Dong, L. Xiongjun, Z. Lu, Commun. Mater. 5, (2024), https://doi.org/10.1038/s43246-024-00487-3

M. Matsubara, A. Suzumura, N. Ohba, R. Asahi, Commun. Mater. 1, (2020), https://doi.org/10.1038/s43246-019-0004-7

J. Liang, J. Liu, Y. Jing, H. Yang, S. Zhou, Y. Xia, F. Xu, L. Sun, P. Huang, Materials Design 255, 114157 (2025), https://doi.org/10.1016/j.matdes.2025.114157

S. Li, Z. Yang, R. Khaledialidusti, S. Lin, J. Yu, M. Khazaei, J. Zhang, L. Sun, X. Li, W. Sun, Acta Mater. 254, 119001 (2023), https://doi.org/10.1016/j.actamat.2023.119001

H. He, X. Wang, Y. Hao, C. Zeng, J. Li, H. Liu, Z. Gao, J. Feng, B. Xiao, Comput. Mater. Sci. 256, 113954 (2025), https://doi.org/10.1016/j.commatsci.2025.113954

M.M. Ali, M.A. Hadi, M.L. Rahman, F.H. Haque, A.F.M.Y. Haider, M. Aftabuzzaman, J. Alloys Compd. 821, 153547 (2020), https://doi.org/10.1016/j.jallcom.2019.153547

Z. Lu, X. Qi, X. He, J. Zhang, Y. Fan, H. Yin, G. Song, Y. Zheng, Y. Bai, J. Am. Ceram. Soc. 107, 6853 (2024), https://doi.org/10.1111/jace.19954

Y. Wei, Q. Zhou, C. Zhang, L. Li, X. Li, F. Li, J. Appl. Phys. 135, 105902 (2024), https://doi.org/10.1063/5.0178597

J. Wei, L. Zhang, Y. Liu, Solid State Commun. 326, 114182 (2021), https://doi.org/10.1016/j.ssc.2020.114182

T. Kocabas, B. Samanta, E. da S. Barboza, C. Sevik, M. Milosevic, D. Cakir, Phys. Rev. Mater. 8, 055002 (2024), https://doi.org/10.1103/PhysRevMaterials.8.055002

X.-H. Li, H.-L. Cui, R.-Z. Zhang, Vacuum 145, 234 (2017), https://doi.org/10.1016/j.vacuum.2017.09.004

H. Zhang, F. Dai, H. Xiang, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 35, 530 (2019), https://doi.org/10.1016/j.jmst.2018.10.006

D. Roy, S. Kanojia, K. Mukhopadhyay, N.E. Prasad, Bull. Mater. Sci. 44, (2021), https://doi.org/10.1007/s12034-020-02327-9

U.P. Agarwal, Molecules 24, 1659 (2019), https://doi.org/10.3390/molecules24091659

M. Bagheri H.-P. Komsa, Sci. Data 10, (2023), https://doi.org/10.1038/s41597-023-01988-5

X. Zhang, Y. Tsujikawa, M. Miyamoto et al., Phys. Rev. Mater. 9, 095001 (2025), https://doi.org/10.1103/5cpd-ll33

Q. Fan, Y. Li, R. Yang, X. Yu, S. Yun, Acta Phys. Pol. A 145, 273 (2024), https://doi.org/10.12693/APhysPolA.145.273

J.-S. Yun, S. Choi, S.H. Im, Carbon Energy 3, 667 (2021), https://doi.org/10.1002/cey2.121

Y. Sun, A. Yang, Y. Duan, L. Shen, M. Peng, H. Qi, Int. J. Refract. Met. Hard Mater. 103, 105781 (2022), https://doi.org/10.1016/j.ijrmhm.2022.105781

M.A.S. Sujon, T. Andriollo, A. Islam, J. Polym. Res. 30, 440 (2023), https://doi.org/10.1007/s10965-023-03819-y

B. Li, Y. Duan, L. Shen, M. Peng, H. Qi, Philos. Mag. 102, 1628 (2022), https://doi.org/10.1080/14786435.2022.2059118

S. Sett, V.K. Aggarwal, A. Singha, A.K. Raychaudhuri, Phys. Rev. Appl. 13, 054008 (2020), https://doi.org/10.1103/PhysRevApplied.13.054008

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1998), https://doi.org/10.1103/PhysRevLett.77.3865

G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996), https://doi.org/10.1103/PhysRevB.54.11169

G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999), https://doi.org/10.1103/PhysRevB.59.1758

F. Shimojo, K. Hoshino, Y. Zempo, Comput. Phys. Commun. 142, 364 (2001), https://doi.org/10.1016/S0010-4655(01)00377-0

J.M. Skelton, L.A. Burton, A.J. Jackson, F. Oba, S.C. Parker, A. Walsh, Phys. Chem. Chem. Phys. 19, 12452 (2017), https://doi.org/10.1039/C7CP01680H

W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747 (2014), https://doi.org/10.1016/j.cpc.2014.02.015

S.P. Keshri, S.K. Pati, ACS Appl. Energy Mater. 5, 13590 (2022), https://doi.org/10.1021/acsaem.2c02304

L. Lindsay, D.A. Broido, J. Phys. Condens. Matter 20, 165209 (2008), https://doi.org/10.1088/0953-8984/20/16/165209

T. Ouyang, M. Hu, J. Appl. Phys. 117, 245101 (2015), https://doi.org/10.1063/1.4922978