Experimental Analysis and Computational Modeling of Residual Stress in β-Ga2O3 Thin Films Grown on Si by RF Magnetron Sputtering

Main Article Content

A. Revenko
V. Kidalov
D. Duleba
M. Derhachov
R. Redko
Robert Johnson
M.-A. Aßmann
O. Gudymenko
O. Sushko
M. Koptiev

Abstract

Gallium oxide is becoming increasingly attractive as a next-generation material for semiconductor applications, prompting the need for efficient and economical techniques for thin-film fabrication, especially on non-native substrates. In this work, β-Ga2O3 films with a thickness of 0.25 µm were grown on a silicon substrate via radio-frequency magnetron sputtering. Raman spectroscopy and X-ray diffraction analysis confirmed the good crystalline quality of  the  synthesized  β-Ga2O3 films.  The  mechanical  stresses in the β-Ga2O3/Si heterostructure were measured using X-ray diffraction. A comparative analysis with simulated data obtained via finite element modeling demonstrated good correlation between experiment and theory. 


 

Article Details

How to Cite
[1]
A. Revenko, “Experimental Analysis and Computational Modeling of Residual Stress in β-Ga2O3 Thin Films Grown on Si by RF Magnetron Sputtering”, Acta Phys. Pol. A, vol. 148, no. 2, p. 158, Oct. 2025, doi: 10.12693/APhysPolA.148.158.
Section
Regular segment

References

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, D. Golberg, Nano Lett. 8, 3081 (2008), https://doi.org/10.1021/nl0731567

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Status Solidi A 211, 21 (2014), https://doi.org/10.1002/pssa.201470201

S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015), https://doi.org/10.7567/JJAP.54.030101

X. Tang, X. Huang, Y. Huang et al., ACS Appl. Mater. Interfaces 10, 5519 (2018), https://doi.org/10.1021/acsami.7b16127

C. Baban, Y. Toyoda, M. Ogita, Thin Solid Films 484, 369 (2005), https://doi.org/10.1016/j.tsf.2005.03.001

A.V. Almaev, E.V. Chernikov, B.O. Kushnarev, N.N. Yakovlev, J. Phys. Conf. Ser. 1410, 012201 (2019), https://doi.org/10.1088/1742-6596/1410/1/012201

M. Fleischer, H. Meixner, Sens. Actuators B 6, 257 (1992), https://doi.org/10.1016/0925-4005(92)80065-6

M. Higashiwaki, K. Sasaki, T. Kamimura, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 103, 123511 (2013), https://doi.org/10.1063/1.4821858

G. Atmaca, H.-Y. Cha, Phys. Scr. 99, 035901 (2024), https://doi.org/10.1088/1402-4896/ad213f

C.-Y. Liu, Y.-B. Wang, X.-L. Jia et al., Phys. Scr. 99, 105931 (2024), https://doi.org/10.1088/1402-4896/ad72a0

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012), https://doi.org/10.1063/1.3674287

M.K. Yadav, A. Mondal, S. Shringi, S.K. Sharma, A. Bag, Semicond. Sci. Technol. 35, 085009 (2020), https://doi.org/10.1088/1361-6641/ab8e64

X. Ji, J. Wang, S. Qi et al., J. Semicond. 45, 042503 (2024), https://doi.org/10.1088/1674-4926/45/4/042503

A. Kaya, H. Mao, J. Gao, R.V. Chopdekar, Y. Takamura, S. Chowdhury, M.S. Islam, IEEE Trans. Electron Devices 64, 2047 (2017), https://doi.org/10.1109/TED.2017.2675990

A. Pérez-Tomás, E. Chikoidze, Y. Dumont et al., Mater. Today Energy 14, 100350 (2019), https://doi.org/10.1016/j.mtener.2019.100350

T.G. Allen, A. Cuevas, Phys. Status Solidi RRL 9, 220 (2015), https://doi.org/10.1002/pssr.201510056

T.G. Allen, A. Cuevas, Appl. Phys. Lett. 105, 031601 (2014), https://doi.org/10.1063/1.4890737

A.K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 12, 3941 (2012), https://doi.org/10.1021/nl301023r

T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007), https://doi.org/10.1143/JJAP.46.7217

E.G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, Appl. Phys. Lett. 88, 031105 (2006), https://doi.org/10.1063/1.2164407

A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, Acta Phys. Pol. A 133, 811 (2018), https://doi.org/10.12693/APhysPolA.133.811

M. Peres, E. Nogales, B. Mendez, K. Lorenz, M.R. Correia, T. Monteiro, N.B. Sedrine, ECS J. Solid State Sci. Technol. 8, Q3097 (2019), https://doi.org/10.1149/2.0191907jss

S.B. Anooz, R. Grüneberg, T.-S. Chou et al., J. Phys. D: Appl. Phys. 54, 034003 (2020), https://doi.org/10.1088/1361-6463/abb6aa

V.I. Nikolaev, S.I. Stepanov, A.I. Pechnikov, S.V. Shapenkov, M.P. Scheglov, A.V. Chikiryaka, O.F. Vyvenko, ECS J. Solid State Sci. Technol. 9, 045014 (2020), https://doi.org/10.1149/2162-8777/ab8b4c

C.-H. Lin, K. Ema, S. Masuya, Q.T. Thieu, R. Sakaguchi, K. Sasaki, A. Kuramata, Jpn. J. Appl. Phys. 62, SF1005 (2023), https://doi.org/10.35848/1347-4065/acb4fb

K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshis, Appl. Phys. Expres 5, 035502 (2012), https://doi.org/10.1143/APEX.5.035502

H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, J.S. Speck, Appl. Phys. Express 7, 095501 (2014), https://doi.org/10.7567/APEX.7.095501

F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, W.V. Schoenfeld, J. Cryst. Growth 475, 77 (2017), https://doi.org/10.1016/j.jcrysgro.2017.06.001

Y. Zhuo, Z. Chen, W. Tu, X. Ma, Y. Pei, G. Wang, Appl. Surf. Sci. 420, 802 (2017), https://doi.org/10.1016/j.apsusc.2017.05.241

M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000), https://doi.org/10.1063/1.1330559

F.-P. Yu, S.-L. Ou, D.-S. Wuu, Opt. Mater. Express 5, 1240 (2015), https://doi.org/10.1364/OME.5.001240

Z. Zhang, P. Yan, Q. Song, H. Chen, W. Zhang, H. Yuan, F. Du, D. Liu, D. Chen, Y. Zhang, Fundam. Res. 4, 1292 (2023), https://doi.org/10.1016/j.fmre.2023.01.001

H. Takane, K. Kaneko, Y. Ota, S. Fujita, Jpn. J. Appl. Phys. 60, 055501 (2021), https://doi.org/10.35848/1347-4065/abf47a

Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, W. Xie, Mater. Sci. Eng. B 176, 846 (2011), https://doi.org/10.1016/j.mseb.2011.04.014

T. Kusaba, P. Sittimart, Y. Katamune et al., Appl. Phys. Express 16, 105503 (2023), https://doi.org/10.35848/1882-0786/acfd07

Z.-H. Chen, Y.-S. Wang, N. Zhang et al., Chin. Phys. B 32, 017301 (2023), https://doi.org/10.1088/1674-1056/ac728c

J. Liang, D. Takatsuki, M. Higashiwaki, Y. Shimizu, Y. Ohno, Y. Naga, N. Shigekawa, Jpn. J. Appl. Phys. 61, SF1001 (2022), https://doi.org/10.35848/1347-4065/ac4c6c

Y. Oshima, E.G. Víllora, K. Shimamura, Appl. Phys. Express 8, 055501 (2015), https://doi.org/10.7567/APEX.8.055501

V.V. Kidalov, A.F. Dyadenchuk, V.P. Kladko, O.I. Gudymenko, M.P. Derhachov, S.O. Popov, O.O. Sushko, V.V. Kidalov, ECS J. Solid State Sci. Technol. 11, 025004 (2022), https://doi.org/10.1149/2162-8777/ac4edc

C.-C. Yen, T.-M. Huang, P.-W. Chen, K.-P. Chang, W.-Y. Wu, D.-S. Wuu, ACS Omega 6, 29149 (2021), https://doi.org/10.1021/acsomega.1c04380

S. Ayyuby, A. Kaur, S. Dhar, S. Mahapatra, Proc. SPIE 13367, 133670D (2025), https://doi.org/10.1117/12.3041757

D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Mater. Today Phys. 11, 100157 (2019), https://doi.org/10.1016/j.mtphys.2019.100157

S.J. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018), https://doi.org/10.1063/1.5006941

S. Husain, A.O.A. Keelani, Mater. Today Proc. 5, 5615 (2018), https://doi.org/10.1016/j.matpr.2017.12.153

Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014), https://doi.org/10.4236/wjnse.2014.41004

A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, I.P. Soshnikov, Phys. Solid State 60, 852 (2018), https://doi.org/10.1134/S1063783418050104

A.V. Osipov, A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, E.V. Osipova, A.I. Pechnikov, I.P. Soshnikov, Continuum Mech. Thermodyn. 30, 1059 (2018), https://doi.org/10.1007/s00161-018-0662-6

Y. Hara, W. Zhu, G. Deng, E. Marin, Q. Guo, G. Pezzotti, J. Phys. D Appl. Phys. 56, 125102 (2023), https://doi.org/10.1088/1361-6463/acbbdb

A.V. Osipov, S.S. Sharofidinov, E.V. Osipova, A.V. Kandakov, A.Y. Ivanov, S.A. Kukushkin, Coatings 12, 1802 (2022), https://doi.org/10.3390/coatings12121802

H.Z. Zhang, Y.C. Kong, Y.Z. Wang et al., Solid State Commun. 109, 677 (1999), https://doi.org/10.1016/S0038-1098(99)00015-0

S.A. Kukushkin, A.V. Osipov, J. Phys. D Appl. Phys. 47, 313001 (2014), https://doi.org/10.1088/0022-3727/47/31/313001

C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Sci. Rep. 6, 35964 (2016), https://doi.org/10.1038/srep35964

Y.C. Choi, W.S. Kim, Y.S. Park et al., Adv. Mater. 12, 746 (2000), https://advanced.onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4095(200005)12:10%3C746::AID-ADMA746%3E3.0.CO;2-N

Y.H. Gao, Y. Bando, T. Sato, Y.F. Zhang, X.Q. Gao, Appl. Phys. Lett. 81, 2267 (2002), https://doi.org/10.1063/1.1507835

R. Rao, A.M. Rao, B. Xu, J. Dong, S. Sharma, M.K. Sunkara, J. Appl. Phys. 98, 094312 (2005), https://doi.org/10.1063/1.2128044

N. Hasuike, I. Maeda, S. Isaji, K. Kobayashi, K. Ohira, T. Isshiki, Jpn. J. Appl. Phys. 62, SF1020 (2023), https://doi.org/10.35848/1347-4065/acc74a

D. Dohy, G. Lucazeau, A. Revcolevschi, J. Solid State Chem. 45, 180 (1982), https://doi.org/10.1016/0022-4596(82)90274-2

D. Machon, P.F. McMillan, B. Xu, J. Dong, Phys. Rev. B 73, 094125 (2006), https://doi.org/10.1103/PhysRevB.73.094125

V.V. Kidalov, A.S. Revenko, D. Duleba, R.A. Redko, M. Assmann, A.I. Gudimenko, R.P. Johnson, ECS J. Solid State Sci. Technol. 13, 114003 (2024), https://doi.org/10.1149/2162-8777/ad89f8

A.S. Gusev, N.I. Kargin, S.M. Ryndya, G.K. Safaraliev, N.V. Siglovaya, M.O. Smirnova, I.O. Solomatin, A.O. Sultanov, A.A. Timofeev, Tech. Phys. 66, 869 (2021), https://doi.org/10.1134/S1063784221060074

M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016), https://doi.org/10.1088/0268-1242/31/3/034001

F. Orlandi, F. Mezzadri, G. Calestani, F. Boschi, R. Fornari, Appl. Phys. Express 8, 111101 (2015), https://doi.org/10.7567/APEX.8.111101

K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki, J. Appl. Phys. 124, 085102 (2018), https://doi.org/10.1063/1.5047017

J.J. Wortman, R.A. Evans, J. Appl. Phys. 36, 153 (1965), https://doi.org/10.1063/1.1713863

J. Vanhellemont, A.K. Swarnakar, O. Van der Biest, ECS Trans. 64, 283 (2014), https://doi.org/10.1149/06411.0283ecst

I. Henins, J. Res. Natl. Bur. Stand. A Phys. Chem. 68A, 529 (1964), https://doi.org/10.6028/jres.068A.050

H. Mukaida, H. Okumura, J.H. Lee, H. Daimon, E. Sakuma, S. Misawa, K. Endo, S. Yoshida, J. Appl. Phys. 62, 254 (1987), https://doi.org/10.1063/1.339191