Insight into Electronic, Optoelectronic and Thermoelectric Properties of Full-Heusler X2TaSi (X = Rb, K): First-Principles Calculations
Main Article Content
Abstract
In this study, we have examined structural, electronic, magnetic, optic, thermoelectric, and elastic properties of full-Heusler alloys X2TaSi (where X = Rb and K). First-principles calculations were performed to analyze the data, with the full-potential linearized augmented plane-wave method serving as the underlying basis. This method is firmly rooted in density functional theory. The calculations were executed using the WIEN2k code, firstly with the generalized gradient approximation and then with its modified Becke–Johnson version, which is commonly used to enhance the band gap values and align them with experimental findings, if available. The results related to the electronic and magnetic properties indicate that the full-Heusler alloys X2TaSi (where X = Rb and K) exhibit half-metallic ferromagnetic behavior. Optical results demonstrated that the Heusler compounds K2TaSi and Rb2TaSi exhibit strong absorption and reflectivity in the ultraviolet range. These findings suggest that these compounds have significant potential for utilization in optical and optoelectronic devices within this spectrum. The findings of thermoelectric properties indicate that the X2TaSi alloys (where X = Rb and K) are N-type semiconductors, as evidenced by their negative Seebeck coefficients. These alloys also exhibit high ZT values close to unity at low and medium temperatures. The elastic properties of the Rb2TaSi compound suggest that it is mechanically stable and relatively ductile. In contrast, the K2TaSi compound exhibits a relatively brittle nature.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
F. Heusler, Verh. Dtsch. Phys. Ges. 5, 219 (1903)
T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011), https://doi.org/10.1016/j.progsolidstchem.2011.02.001
I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002), https://doi.org/10.1103/PhysRevB.66.174429
I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004), https://doi.org/10.1103/RevModPhys.76.323
S.A. Wolf, D. Treger, IEEE Trans. Magn. 36, 2748 (2000), https://doi.org/10.1109/20.908580
R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983), https://doi.org/10.1103/PhysRevLett.50.2024
K.-I. Kobayashi, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Nature 395, 677 (1998), https://doi.org/10.1038/27394
K. Ono, J. Okabayashi, M. Mizuguchi, M. Oshima, A. Fujimori, H. Akinaga, J. Appl. Phys. 91, 8088 (2002), https://doi.org/10.1063/1.1456396
K. Schwarz, J. Phys. F 16, L211 (1986), https://doi.org/10.1088/0305-4608/16/9/002
W.-H. Xie, Y.-Q. Xu, B.-G. Liu, D.G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003), https://doi.org/10.1103/PhysRevLett.91.037204
H. Shoren, F. Ikemoto, K. Yoshida, N. Tanaka, K. Motizuki, Physica E 10, 242 (2001), https://doi.org/10.1016/S1386-9477(01)00091-1
E.S. Kryachko, E.V. Ludeña, Phys. Rep. 544, 123 (2014), https://doi.org/10.1016/J.PhysRep.2014.06.002
W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152, 074101 (2020), https://doi.org/10.1063/1.5143061
F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009), https://doi.org/10.1103/PhysRevLett.102.226401
A. Otero-de-la-Roza, V. Luaña, Comput. Phys. Commun. 182, 1708 (2011), https://doi.org/10.1016/j.cpc.2011.04.016
G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006), https://doi.org/10.1016/j.cpc.2006.03.007
A.R. Oganov, C.W. Glass, J. Chem. Phys. 124, 244704 (2006), https://doi.org/10.1063/1.2210932
A. Wederni, J. Daza, W.B. Mbarek, J. Saurina, L. Escoda, J.-J. Suñol, Metals 14, 688 (2024), https://doi.org/10.3390/met14060688
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944), https://doi.org/10.1073/pnas.30.9.244
A.A. Emery, C. Wolverton, Sci. Data 4, 170153 (2017), https://doi.org/10.1038/sdata.2017.153
S. Berri, N. Bouarissa, Acta Phys. Pol. A 146, 270 (2024), https://doi.org/10.12693/APhysPolA.146.270
G. Grimvall, Thermophysical Properties of Materials] 10.1016/B978-0-444-82794-4.X5000-1, Elsevier, Amsterdam 1999}
G.V. Sinko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002), https://doi.org/10.1088/0953-8984/14/29/301
M. Born, K. Huang, Dynamical Theory and Experiment I] , Springer, Berlin 1982}
O. Beckstein, J.E. Klepeis, G.L. W. Hart, O. Pankratov, Phys. Rev. B 63, 134112 (2001), https://doi.org/10.1103/PhysRevB.63.134112
W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig 1928, https://doi.org/10.1007/978-3-663-15884-4
A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929), https://doi.org/10.1002/zamm.19290090104
O. Addou, A. Touia, K. Benyahia, Acta Phys. Pol. A 143, 252 (2023), https://doi.org/10.12693/APhysPolA.143.252
A.A. Yahaya, W.A. Yahya, A.S. Ahmed, A.A. Sholagberu, Acta Phys. Pol. A 145, 194 (2024), https://doi.org/10.12693/APhysPolA.145.194
A.B. Siad, M. Baira, F.Z. Dahou, K. Bettir, M.E. Monir, J. Solid State Chem. 302, 122362 (2021), https://doi.org/10.1016/j.jssc.2021.122362
M.D.I. Bhuyan, S. Das, M.A. Basith, J. Alloys Compd. 878, 160389 (2021), https://doi.org/10.1016/j.jallcom.2021.160389
G.A.M. Mersal, H. Alkhaldi, G.M. Mustafa et al., J. Mater. Res. Technol. 18, 2831 (2022), https://doi.org/10.1016/j.jmrt.2022.03.175
S. Haid, W. Benstaali, A. Abbad, B. Bouadjemi, S. Bentata, Z. Aziz, Mater. Sci. Eng. B 245, 68 (2019), https://doi.org/10.1016/j.mseb.2019.05.013
M. Fodil, O. Baraka, A. Mokadem, Acta Phys. Pol. A 146, 143 (2024), https://doi.org/10.12693/APhysPolA.146.143
S. Haid, B. Bouadjemi, K. Azil, T. Lantri, M. Houari, M. Matougui, S. Bentata, J. Electron. Mater. 53, 75 (2024), https://doi.org/10.1007/s11664-023-10747-6
V. Dalouji, Heliyon 10, e37509 (2024), https://doi.org/10.1016/j.heliyon.2024.e37509
G.S. Nolas, J. Poon, M. Kanatzidis, MRS Bull. 31, 199 (2006), https://doi.org/10.1557/mrs2006.45
T. Fang, S. Zheng, H. Chen, H. Cheng, L. Wanga, P, Zhang, RSC Adv. 6, 10507 (2016), https://doi.org/10.1039/C5RA23091H
M. Matougui, B. Bouadjemi, M. Houari, S. Haid, T. Lantri, A. Zitouni, S. Bentata, B. Bouhafs, Z. Aziz, Chin. J. Phys. 57, 195 (2019), https://doi.org/10.1016/j.cjph.2018.11.015
C.L. Julian, Phys. Rev. 137, A128 (1965), https://doi.org/10.1103/PhysRev.137.A128
L. Benahmedi, A. Besbes, R. Djelti, Acta Phys. Pol. A 147, 393 (2025), https://doi.org/10.12693/APhysPolA.147.393