Electron Transport Properties in BN Molecular Junction from First-Principles Calculations
Main Article Content
Abstract
Density functional theory and non-equilibrium Green's function method are used to study the contact geometry and electron transport properties of BN molecules coupled with Au (100) electrodes. We calculated the conductance of four different coupling morphologies to simulate the stretching and breaking process of the Au–BN–Au molecular junction. The calculated results yield the equilibrium distances of the four configurations as dz = 12.631, 9.844, 10.024, 6.424 Å; equilibrium conductances are 0.228 G0, 0.975 G0, 0.813 G0, 5.201 G0, indicating that the BN nanojunction has good electron transport properties. A key finding is that within the voltage range from -1.6 to 1.6 V, the current–voltage of nearly all junctions shows a linear relationship, indicating that the BN molecular junction has metal-like properties under low bias voltage. The asymmetry of the I–V curves directly reflects the asymmetry in molecular structure and coupling morphology. These results confirm that the conductance of BN nanojunctions is strongly influenced by the coupling morphology, electrode distance, and external bias voltage of the electrode-connected BN molecules, with the metal-like transport behavior and morphological asymmetry under bias emerging as critical characteristics.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997), https://doi.org/10.1126/science.278.5336.252
H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. Mceuen, Nature 407, 57 (2000), https://doi.org/10.1038/35024031
B. Xu, N.J. Tao, Science 301, 1221 (2003), https://doi.org/10.1126/science.1087481
M.T. González, S. Wu, R. Huber, S.J. Van Der Molen, C. Schönenberger, M. Calame, Nano Lett. 6, 2238 (2006), https://doi.org/10.1021/nl061581e
Z. Huang, B. Xu, Y. Chen, M.D. Ventra, N. Tao, Nano Lett. 6, 1240 (2006), https://doi.org/10.1021/nl0608285
J. Reichert, R. Ochs, D. Beckmann, H. Weber, M. Mayor, H. von Löhneysen, Phys. Rev. Lett. 88, 176804 (2002), https://doi.org/10.1103/PhysRevLett.88.176804
M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Phys. Rev. Lett. 101, 046801 (2008), https://doi.org/10.1103/PhysRevLett.101.046801
A.A. Fouladi, Chin. Phys. B 26, 47304 (2017), https://doi.org/10.1088/1674-1056/26/4/047304
L. Patrone, S. Palacin, J. Charlier, F. Armand, J.P. Bourgoin, H. Tang, S. Gauthier, Phys. Rev. Lett. 91, 096802 (2003), https://doi.org/10.1103/PhysRevLett.91.096802
B. Xu, X. Xiao, N.J. Tao, J. Am. Chem. Soc. 125, 16164 (2003), https://doi.org/10.1021/ja038949j
S. Kaneko, T. Nakazumi, M. Kiguchi, J. Phys. Chem. Lett. 1, 3520 (2010), https://doi.org/10.1021/jz101506u
H. Song, M.A. Reed, T. Lee, Adv. Mater. 23, 1583 (2011), https://doi.org/10.1002/adma.201004291
C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000), https://doi.org/10.1038/35046000
R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Science 272, 1323 (1996), https://doi.org/10.1126/science.272.5266.1323
A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974), https://doi.org/10.1016/0009-2614(74)85031-1
J.-X. Yu, X.-R. Chen, S. Sanvito, Y. Cheng, Appl. Phys. Lett. 100, 013113 (2012), https://doi.org/10.1063/1.3665614
C. Zhang, R.N. Barnett, U. Landman, Phys. Rev. Lett. 100, 046801 (2008), https://doi.org/10.1103/PhysRevLett.100.046801
Y. Qi, D. Guan, Y. Jiang, Y. Zheng, C. Liu, Phys. Rev. Lett. 97, 256101 (2006), https://doi.org/10.1103/PhysRevLett.97.256101
S. Csonka, A. Halbritter, G. Mihály, O.I. Shklyarevskii, S. Speller, H. van Kempen, Phys. Rev. Lett. 93, 016802 (2004), https://doi.org/10.1103/PhysRevLett.93.016802
R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek, Nature 419, 906 (2002), https://doi.org/10.1038/nature01103
W. Thijssen, D. Marjenburgh, R. Bremmer, J. Van Ruitenbeek, Phys. Rev. Lett. 96, 026806 (2006), https://doi.org/10.1103/PhysRevLett.96.026806
M. Strange, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 73, 125424 (2006), https://doi.org/10.1103/PhysRevB.73.125424
F.-T. Liu, Y. Cheng, F.-B. Yang, X.-R. Chen, Chin. Phys. Lett. 30, 107303 (2013), https://doi.org/10.1088/0256-307x/30/10/107303
F.-T. Liu, Y. Cheng, F.-B. Yang, X.-R. Chen, Chem. Phys. Lett. 590, 160 (2013), https://doi.org/10.1016/j.cplett.2013.10.073
F.-T. Liu, Y. Cheng, X.-R. Chen, X.-H. Cheng, Acta Phys. Sin. 63, 137303 (2014), https://doi.org/10.7498/aps.63.137303
F.-T. Liu, Y. Cheng, X.-H. Cheng, F.-B. Yang, X.-R. Chen, Chin. Phys. Lett. 30, 067302 (2013), https://doi.org/10.1088/0256-307x/30/6/067302
C.-Z. Gu, Q. Wang, J.-J. Li, K. Xia, Chin. Phys. B 22, 098107 (2013), https://doi.org/10.1088/1674-1056/22/9/098107
A. Sedky, E. El-Suheel, Chin. Phys. B 21, 116103 (2012), https://doi.org/10.1088/1674-1056/21/11/116103
L. Li, C. Li, Y. Chen, Physica E 40, 2513-2516 (2008), https://doi.org/10.1016/j.physe.2007.06.065
Y.J. Chen, B. Chi, D.C. Mahon, Y. Chen, Nanotechnology 17, 2942 (2006), https://doi.org/10.1088/0957-4484/17/12/020
O. Cretu, H.P. Komsa, O. Lehtinen, G. Algara-Siller, U. Kaiser, K. Suenaga, A.V. Krasheninnikov, ACS Nano 8, 11950 (2014), https://doi.org/10.1021/nn5046147
Y. Rong, J.H. Warner, ACS Nano 8, 11907 (2014), https://doi.org/10.1021/nn5065524
S. Zhang, Q. Wang, Y. Kawazoe, P. Jena, J. Am. Chem. Soc. 135, 18216 (2013), https://doi.org/10.1021/ja410088y
S.-L. Wang, C.-L. Yang, M. Wang, X.G. Ma, J. Ludong Univ. 33, 26 (2017)
S.-L. Wang, C.-L. Yang, M. Wang, X.G. Ma, J.-G. Xin, Phys. Lett. A 381, 1493 (2017), https://doi.org/10.1016/j.physleta.2017.02.030
J. Zeng, K.-Q. Chen, Y.-X. Deng, Physica E 114, 113565 (2019), https://doi.org/10.1016/j.physe.2019.113565
M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002), https://doi.org/10.1103/PhysRevB.65.165401
W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133
A.-P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994), https://doi.org/10.1103/PhysRevB.50.5528
J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001), https://doi.org/10.1103/PhysRevB.63.245407
C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C Solid State Phys. 4, 916 (1971), https://doi.org/10.1088/0022-3719/4/8/018
L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge 1995, https://doi.org/10.1017/CBO9780511805776
M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985), https://doi.org/10.1103/PhysRevB.31.6207
J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981), https://doi.org/10.1103/PhysRevB.23.5048
N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991), https://doi.org/10.1103/PhysRevB.43.1993
L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982), https://doi.org/10.1103/PhysRevLett.48.1425
T. Zhang, Y. Cheng, X.-R. Chen, RSC Adv. 4, 51838 (2014), https://doi.org/10.1039/c4ra09132a
D. Çakir, O. Gülseren, Phys. Rev. B 84, 085450 (2011), https://doi.org/10.1103/PhysRevB.84.085450
P.N. D'yachkov, V.A. Zaluev, S.N. Piskunov, Y.F. Zhukovskii, RSC Adv. 5, 91751 (2015), https://doi.org/10.1039/C5RA16168A
R.T. Senger, S. Tongay, E. Durgun, S. Ciraci, Phys. Rev. B 72, 75419 (2005), https://doi.org/10.1103/PhysRevB.72.075419
A. Abdurahman, A. Shukla, M. Dolg, Phys. Rev. B 65, 115106 (2002), https://doi.org/10.1103/PhysRevB.65.115106
I.S. Kristensen, D.J. Mowbray, K.S. Thygesen, K.W. Jacobsen, J. Phys. Condens. Matter 20, 374101 (2008), https://doi.org/10.1088/0953-8984/20/37/374101
J.-X. Yu, Y. Cheng, S. Sanvito, X.-R. Chen, Appl. Phys. Lett. 100, 103110 (2012), https://doi.org/10.1063/1.3693380
I.I. Oleynik, M.A. Kozhushner, V.S. Posvyanskii, L. Yu, Phys. Rev. Lett. 96, 096803 (2006), https://doi.org/10.1103/PhysRevLett.96.096803
Y. Mu, Z.-Y. Zeng, Y. Cheng, X.-R. Chen, RSC Adv. 6, 91453 (2016), https://doi.org/10.1039/c6ra11028b
H. Weber, J. Reichert, R. Ochs, D. Beckmann, M. Mayor, H. Löhneysen, Physica E 18, 231 (2003), https://doi.org/10.1016/S1386-9477(02)00986-4
J.B. Pan, Z.H. Zhang, K.H. Ding, X.Q. Deng, C. Guo, Appl. Phys. Lett. 98, 092102 (2011), https://doi.org/10.1063/1.3556278