Polymerization-Induced Modification of the Switching Process of a Nematic Liquid Crystal

Main Article Content

M. Kajkowska
M. Chychłowski
D. Budaszewski

Abstract

In this paper, we demonstrate a method for modifying the switching process of a liquid crystal by utilizing selective photopolymerization of a nematic liquid crystal-based composite. The proposed method is based on point-by-point irradiation of a uniformly oriented nematic with a high-intensity blue laser to create unusual polymer chains. Instead of a typical polymer network consisting of long chains, shorter chains are obtained that are unanchored to the aligning surface of the liquid crystal cell. This is possible due to the irradiation of the composite only at one small point at a time and the heating of the material resulting from the absorption of radiation. Consequently, the polymerized pattern is visible only during the reorientation of the liquid crystal.

Article Details

How to Cite
[1]
M. Kajkowska, M. Chychłowski, and D. Budaszewski, “Polymerization-Induced Modification of the Switching Process of a Nematic Liquid Crystal”, Acta Phys. Pol. A, vol. 147, no. 6, p. 482, Jul. 2025, doi: 10.12693/APhysPolA.147.482.
Section
Regular segment

References

A. Repiova, V. Frederiks, J. Russ. Phys. Chem. Soc. 59, 183 (1927)

D. Andrienko, J. Mol. Liq. 267, 520 (2018), https://doi.org/10.1016/j.molliq.2018.01.175

C. Zhao, L. Cai, Y. Zhao, Microelectron. Eng. 250, 111639 (2021), https://doi.org/10.1016/j.mee.2021.111639

Y. Zhao, Y. Zhang, R. Lv, J. Li, J. Lightwave Technol. 35, 3440 (2017), https://doi.org/10.1109/JLT.2016.2576500

J.A. Castellano, Liq. Cryst. Today 1, 4 (1991), https://doi.org/10.1080/13583149108628568

J. Mysliwiec, A. Szukalska, A. Szukalski, L. Sznitko, Nanophotonics 10, 2309 (2021), https://doi.org/10.1515/nanoph-2021-0096

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A.Y.-G. Fuh, J.-H. Liu, P.-C. Yang, Appl. Phys. Lett. 86, 161120 (2005), https://doi.org/10.1063/1.1897439

W. Zhang, A.A.F. Froyen, A.P.H.J. Schenning, G. Zhou, M.G. Debije, L.T. de Haan, Adv. Photon. Res. 2, 2100016, (2021), https://doi.org/10.1002/adpr.202100016

J.F. Algorri, V. Urruchi, N. Bennis, J.M. Sánchez-Pena, Sensors 14, 6571 (2014), https://doi.org/10.3390/s140406571

J.C. Torres, B. García-Cámara, I. Pérez, V. Urruchi, J.M. Sánchez-Pena, Sensors 18, 3436 (2018), https://doi.org/10.3390/s18103436

J. Hu, D. Zhou, Y. Su, S. Liu, P. Miao, Y. Shi, W. Sun, Y. Liu, Opt. Lett. 45, 5209 (2020), https://doi.org/10.1364/OL.402473

Y. Yang, A. Forbes, L. Cao, Opto-Electron. Sci. 2, 230026 (2023), https://doi.org/10.29026/oes.2023.230026

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, Q. Mu, Opt. Express 12, 6403 (2004), https://doi.org/10.1364/OPEX.12.006403

S.J. Woltman, G.D. Jay, G.P. Crawford, Nat. Mater. 6, 929 (2007), https://doi.org/10.1038/nmat2010

J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012), https://doi.org/10.1016/j.cap.2012.03.019

A. Gridyakina, N. Kasian, M.S. Chychłowski, M. Kajkowska, P. Lesiak, Mater. Today Phys. 38, 101258 (2023), https://doi.org/10.1016/j.mtphys.2023.101258

J. Prakash, S. Khan, S. Chauhan, A.M. Biradar, J. Mol. Liq. 297, 112052 (2020), https://doi.org/10.1016/j.molliq.2019.112052

Y. Kim, N. Tamaoki, ChemPhotoChem 3, 284 (2019), https://doi.org/10.1002/cptc.201900034

F. Ahmad, M. Luqman, M. Jamil, Mol. Cryst. Liq. Cryst. 731, 1 (2021), https://doi.org/10.1080/15421406.2021.1954759

M. Škarabot, N.J. Mottram, S. Kaur, C.T. Imrie, E. Forsyth, J.M.D. Storey, R. Mazur, W. Piecek, L. Komitov, ACS Omega 7, 9785 (2022), https://doi.org/10.1021/acsomega.2c00023

M. Tykarska, K. Kurp, S. Mironov, N. Rychłowicz, J. Karcz, J. Dziaduszek, P. Kula, S. Stulov, A. Bubnov, J. Mol. Liq. 409, 125426 (2024), https://doi.org/10.1016/j.molliq.2024.125426

Y.-H. Fan, H. Ren, S.-T. Wu, Opt. Express 11, 3080 (2003), https://doi.org/10.1364/OE.11.003080

Z. He, W. Shen, P. Yu, Y. Zhao, Z. Zeng, Z. Liang, Z. Chen, H. Zhang, H. Zhang, Z. Miao, D. Wang, Liq. Cryst. 49, 59 (2022), https://doi.org/10.1080/02678292.2021.1944357

M. Kajkowska, M.S. Chychłowski, S. Ertman, P. Lesiak, Materials 16, 7313 (2023), https://doi.org/10.3390/ma16237313

V.V. Presnyakov, T.V. Galstian, J. Appl. Phys. 97, 103101 (2005), https://doi.org/10.1063/1.1896436

H. Ren, Y.-H. Fan, Y.-H. Lin, S.-T. Wu, Opt. Commun. 247, 101 (2005), https://doi.org/10.1016/j.optcom.2004.11.033

M. Kajkowska, M. Chychłowski, P. Lesiak, Photon. Lett. Pol. 14, 68 (2022), https://doi.org/10.4302/plp.v14i3.1166

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, Appl. Phys. Lett. 94, 101104 (2009), https://doi.org/10.1063/1.3097355

A. Ghosh, B. Norton, T.K. Mallick, Solar Energy Mater. Solar Cells 174, 572 (2018), https://doi.org/10.1016/j.solmat.2017.09.047

K.A. Rutkowska, M. Chychłowski, Photon. Lett. Pol. 10, 11 (2018), https://doi.org/10.4302/plp.v10i1.805

J. Wang, C. McGinty, R. Reich, V. Finnemeyer, H. Clark, S. Berry, P. Bos, Materials 11, 1195 (2018), https://doi.org/10.3390/ma11071195

M.S. Chychłowski, M. Kajkowska, B. Jankiewicz, B. Bartosewicz, T.R. Woliński, P. Lesiak, Soft Matter 19, 3398 (2023), https://doi.org/10.1039/D3SM00173C

J. Yan, Y. Li, S.-T. Wu, Opt. Lett. 36, 1404 (2011), https://doi.org/10.1364/OL.36.001404

Y. Ye, L. Guo, T. Zhong, Polymers 15, 2962 (2023), https://doi.org/10.3390/polym15132962

H. Zhang, Z. Miao, W. Shen, Compos. Part A Appl. Sci. Manuf. 163, 107234 (2022), https://doi.org/10.1016/j.compositesa.2022.107234

Y. Shin, J. Jiang, G. Qin, Q. Wang, Z. Zhou, D.-K. Yang, RSC Adv. 10, 41693 (2020), https://doi.org/10.1039/d0ra07016e

A. Moheghi, H. Nemati, D.-K. Yang, Opt. Mater. Express 5, 1217 (2015), https://doi.org/10.1364/ome.5.001217

X. Zhan, D. Luo, K.-L. Yang, RSC Adv. 11, 38694 (2021), https://doi.org/10.1039/D1RA08030J