Direct Current Degradation and Electrophysical Properties of ZnO–Polyaniline Composites

Main Article Content

M. Ghafouri
M. Ahdi
B. Tavakkoli

Abstract

This   study   investigates   the   electrical   nonlinear  properties  of ZnO–polyaniline composite varistors before and after direct current degradation, as well as the influence of ZnO content variation in the composite. All samples were fabricated via the hot-pressing method at a temperature of 130°C and a pressure of 60 MPa. The results show that increasing the ZnO content reduces both the nonlinear coefficient (from 8.3 to 7.7)  and  the  breakdown  voltage (from 560 to 340 V). However, direct current degradation induced a notable rise in the nonlinear coefficient, most prominently in the 80% ZnO sample, where it increased from 8.3 to 11.1. All samples showed a slight increase in breakdown voltage (~40 V) alongside a reduction in leakage current. Microstructural analysis via scanning electron microscope reveals two distinct phases, i.e., ZnO grains and polymer-rich intergranular regions. Post-degradation scanning electron microscope analysis indicated no significant changes in ZnO grain morphology, suggesting that the observed electrical shifts are primarily linked to interfacial modifications.


 

Article Details

How to Cite
[1]
M. Ghafouri, M. Ahdi, and B. Tavakkoli, “Direct Current Degradation and Electrophysical Properties of ZnO–Polyaniline Composites”, Acta Phys. Pol. A, vol. 147, no. 6, p. 475, Jul. 2025, doi: 10.12693/APhysPolA.147.475.
Section
Regular segment

References

P.R. Bueno, J.A. Varela, E. Longo, J. Eur. Ceram. Soc. 28, 505 (2008), https://doi.org/10.1016/j.jeurceramsoc.2007.06.011

D. Xu, L. Shi, Z. Wu, Q. Zhong, X. Wu, J. Eur. Ceram. Soc. 29, 1789 (2009), https://doi.org/10.1016/j.jeurceramsoc.2008.10.020

S. Bernik, S. Maček, A. Bui, J. Eur. Ceram. Soc. 24, 1195 (2004), https://doi.org/10.1016/S0955-2219(03)00412-6

M. Peiteado, J. Fernández, A. Caballero, J. Eur. Ceram. Soc. 25, 2999 (2005), https://doi.org/10.1016/j.jeurceramsoc.2005.03.175

C. Leach, Acta Mater. 53, 237 (2005), https://doi.org/10.1016/j.actamat.2004.07.006

K. Eda, J. Appl. Phys. 49, 2964 (1978), https://doi.org/10.1063/1.325139

T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990), https://doi.org/10.1111/j.1151-2916.1990.tb05232.x

G.D. Mahan, L.M. Levinson, H.R. Philipp, J. App. Phys. 50, 2799 (1979), https://doi.org/10.1063/1.326191

G. Mahan, L. Levinson, H. Philipp, Appl. Phys. Lett. 33, 830 (1978), https://doi.org/10.1063/1.90545

M. Peiteado, J.F. Fernández, A.C. Caballero, J. Eur. Ceram. Soc. 27, 3867 (2007), https://doi.org/10.1016/j.jeurceramsoc.2007.02.046

M. Elfwing, R. Österlund, E. Olsson, J. Am. Ceram. Soc. 83, 2311 (2000), https://doi.org/10.1111/j.1151-2916.2000.tb01552.x

Y.W. Lao, S.T. Kuo, W.H. Tuan, J. Electroceram. 19, 187 (2007), https://doi.org/10.1007/s10832-007-9187-2

S. Tkaczyk, Physica E 43, 1179 (2011), https://doi.org/10.1016/j.physe.2011.01.025

F.H. Cristovan, Synth. Met 161, 2041 (2011), https://doi.org/10.1016/j.synthmet.2011.06.030

Q. Liu, X. Yao, X. Zhou, Z. Qin, Z. Liu, Scr. Mater. 66, 113 (2012), https://doi.org/10.1016/j.scriptamat.2011.10.016

H. Bidadi, S.M. Aref, M. Ghafouri, M. Parhizkar, A. Olad, J. Phys. Chem. Solids 74, 1169 (2013), https://doi.org/10.1016/j.jpcs.2013.03.017

H. Bidadi, S.M. Aref, M. Ghafouri, M. Parhizkar, A. Olad, Mater. Sci. Semicond. Process. 16, 752 (2013), https://doi.org/10.1016/j.mssp.2012.12.022

H. Bidadi, A. Olad, M. Parhizkar, S.M. Aref, M. Ghafouri, Vacuum 87, 50 (2013), https://doi.org/10.1016/j.vacuum.2012.07.003

H. Bidadi, S.M. Aref, M. Ghafouri, M. Parhizkar, A. Olad, Cur. Appl. Phys. 13, 355 (2013), https://doi.org/10.1016/j.cap.2012.08.010

R. Parra, J. Rodriguez-Paez, J. Varela, M. Castro, Ceram. Int. 34, 563 (2008), https://doi.org/10.1016/j.ceramint.2006.12.003

P. Kostić, O. Milosević, D. Uskoković, M. Ristić, Physica B+C 150, 175, (1988), https://doi.org/10.1016/0378-4363(88)90120-9

T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 3487 (1985), https://doi.org/10.1007/BF01113755

Y.M. Chiang, W. Kingery, L.M. Levinson, J. Appl. Phys. 53, 1765 (1982), https://doi.org/10.1063/1.331647

A. Iga, Jpn. J. Appl. Phys. 19, 201 (1980), https://doi.org/10.1143/JJAP.19.201

K. Sato, Y. Takada, T. Takemura, M. Ototake, J. Appl. Phys. 53, 8819 (1982), https://doi.org/10.1063/1.330433

K. Eda, A. Iga, M. Matsuoka, J. Appl. Phys. 51, 2678 (1980), https://doi.org/10.1063/1.327927

T.K. Gupta, W. Carlson, P. Hower, J. Appl. Phys. 52, 4104 (1981), https://doi.org/10.1063/1.329262

T. Corrales, F. Catalina, C. Peinado, N. Allen, E. Fontan, J. Photochem. Photobiol. A 147, 213 (2002), https://doi.org/10.1016/S1010-6030(01)00629-3

J. Verdu, J. Rychly, L. Audouin, Polym. Degrad. Stab. 79, 503 (2003), https://doi.org/10.1016/S0141-3910(02)00366-X

N.S. Allen, M. Edge, T. Corrales, A. Childs, C.M. Liauw, F. Catalina, C. Peinado, A. Minihan, D. Aldcroft, Polym. Degrad. Stab. 61, 183 (1998), https://doi.org/10.1016/S0141-3910(97)00114-6

D.Y. Perera, Prog. Org. Coat. 50, 247 (2004), https://doi.org/10.1016/j.porgcoat.2004.03.002

N.S. Allen, M. Edge, T. Corrales, F. Catalina, Prog. Org. Coat. 61, 139 (1998), https://doi.org/10.1016/S0141-3910(97)00143-2

A.G. MacDiarmid, J.C. Chiang, A.F. Richter, Synth. Met. 18, 285 (1987), https://doi.org/10.1016/0379-6779(87)90893-9

G.K. Elyashevich, L. Terlemezyan, I.S. Kuryndin, V.K. Lavrentyev, P. Mokreva, E.Y. Rosova, Y.N. Sazanov, Thermochim. Acta 374, 23 (2001), https://doi.org/10.1016/S0040-6031(01)00475-0

A.H.I. Mourad, Mater. Design 31, 918 (2010), https://doi.org/10.1016/j.matdes.2009.07.031

M. Ghafouria, M. Parhizkar, H. Bidadi, S.M. Aref, A. Olad, Mater. Chem. Phys. 147, 1117 (2014), https://doi.org/10.1016/j.matchemphys.2014.06.066

F. Tabrizi, M. Parhizkar, H. Bidadi, M. Ghafouri, Trans. Nonferrous Met. Soc. China 28, 1377 (2018), https://doi.org/10.1016/S1003-6326(18)64776-4

H.C. Card, E.S. Yang, IEEE Trans. Electron Devices 24, 397 (1977), https://doi.org/10.1109/T-ED.1977.18747

P. William, O.L. Krivanek, G. Thomas, J. Appl. Phys. 51, 3930 (1980), https://doi.org/10.1063/1.328168

S.A Pianaro, P.R Bueno, P. Olivi, E. Longo, J.A Varela, J. Mater. Sci. Mater. Electron. 9, 159 (1998), https://doi.org/10.1023/A:1008821808693

M. Tu, W. Han, R. Zeng, S.M. Best, R.E. Cameron, Colloids Surf. A 407, 126 (2012), https://doi.org/10.1016/j.colsurfa.2012.05.019

L. Dai, Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications, 1st ed., Springer-Verlag, London 2004, https://doi.org/10.1007/b97517

Y.S. Lee, T.Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992), https://doi.org/10.1111/j.1151-2916.1992.tb04236.x

D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999), https://doi.org/10.1111/j.1151-2916.1999.tb01793.x

L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986), https://www.researchgate.net/publication/279896134_ZINC_OXIDE_VARISTORS_-_A_REVIEW