Landau–Ginzburg–Devonshire Theory for the Temperature–Grain Size Phase Diagram of BaTiO3 Nanoceramics

Main Article Content

K.-O. Jang
I.-H. Kim
K.H. Ho
I.-H. Kim
C.-J. Kim
B.-U. Ri

Abstract

The temperature and grain size dependences of the ferroelectric phase transitions and dielectric properties of BaTiO3 nanoceramics are described by higher-order Landau–Ginzburg–Devonshire theory. A structurally stable 8th-order Landau–Ginzburg–Devonshire potential with the 2nd- and 4th-order coefficients varying with temperature and grain size is proposed for a phenomenology of BaTiO3 nanoceramics. The temperature–grain size phase diagram constructed on the basis of this potential model describes well the experimentally observed cubic–tetragonal–orthorhombic and cubic–orthorhombic–rhombohedral triple points and ferroelectric to paraelectric to ferroelectric reentrance phenomenon. The spontaneous polarization and dielectric constant of BaTiO3 nanoceramics are calculated. It is shown that dielectric anomalies appear at the phase transitions and dielectric peaks are depressed, and diffused with decreasing grain size.

Article Details

How to Cite
[1]
K.-O. Jang, I.-H. Kim, K. Ho, I.-H. Kim, C.-J. Kim, and B.-U. Ri, “Landau–Ginzburg–Devonshire Theory for the Temperature–Grain Size Phase Diagram of BaTiO3 Nanoceramics”, Acta Phys. Pol. A, vol. 147, no. 6, p. 463, Jul. 2025, doi: 10.12693/APhysPolA.147.463.
Section
Regular segment

References

Y. Feng, J.L. Li, W.L. Li, M.L. Li, Q.G. Chi, T.D. Zhang, W.D. Fei, Compos. Part A Appl. Sci. Manuf. 125, 105524 (2019), https://doi.org/10.1016/j.compositesa.2019.105524

B.S. Ahmed, M.B. Nandaprakash, K. Namratha, K. Byrappa, R. Somashekar, Phys. Status Solidi B 2018, 1700581 (2018), https://doi.org/10.1002/pssb.201700581

J.J. Wang, E.A. Eliseev, X.Q. Ma, P.P. Wu, A.N. Morozovska, L.-Q. Chen, Acta Mater. 59, 7189 (2011), https://doi.org/10.1016/j.actamat.2011.08.015

D. Machon, L. Piot, D. Hapiuk et al., Nano Lett. 14, 269 (2014), https://doi.org/10.1021/nl4039345

T. Bolstad, K. Kjærnes, K. Raa, R. Takahashi, M. Lippmaa, T. Tybell, Mater. Res. Express 6, 056409 (2019), https://doi.org/10.1088/2053-1591/ab0221

Y.Q. Tan, J.L. Zhang, Y.Q. Wu et al., Sci. Rep. 5, 9953 (2015), https://doi.org/10.1038/srep09953

C. Chen, H. Hao, T. Wang, J.S. Cheng, Z.P. Luo, L. Zhang, M.H. Cao, Z.H. Yao, H.X. Liu, Ceram. Int. 45, 7166 (2019), https://doi.org/10.1016/j.ceramint.2018.12.223

M.A. Gomes, L.G. Magalhães, A.R. Paschoal, Z.S. Macedo, Á.S. Lima, K.I.B. Eguiluz, G.R. Salazar-Banda, J. Nanomater. 2018, 5167182 (2018), https://doi.org/10.1155/2018/5167182

Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004), https://doi.org/10.1103/PhysRevB.70.024107

V. Buscaglia, M. Viviani, M.T. Buscaglia et al., Powder Technol. l148, 24 (2004), https://doi.org/10.1016/j.powtec.2004.09.016

C. Pithan, Y. Shiratori, R. Waserz, J. Dornseiffer, F.-H. Haegel, J. Am. Ceram. Soc. 89, 2908 (2006), https://doi.org/10.1111/j.1551-2916.2006.01144.x

X.Y. Deng, X.H. Wang, H. Wen, L.L. Chen, L. Chen, L.T. Li, Appl. Phys. Lett. 88, 252905 (2006), https://doi.org/10.1063/1.2213508

M.T. Buscaglia, M. Viviani, V. Buscaglia et al., Phys. Rev. B 73, 064114 (2006), https://doi.org/10.1103/PhysRevB.73.064114

M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996), https://doi.org/10.1103/PhysRevB.54.3158

G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985), https://doi.org/10.1063/1.336051

B.R. Li, X.H. Wang, L.T. Li, H. Zhou, X.T. Liu, X.Q. Han, Y.C. Zhang, X.W. Qi, X.Y. Deng, Mater. Chem. Phys. 83, 23 (2004), https://doi.org/10.1016/j.matchemphys.2003.08.009

X.Y. Deng, X.H. Wang, H. Wen, A.G. Kang, Z.L. Gui, L.G. Li, J. Am. Ceram. Soc. 89, 1059 (2006), https://doi.org/10.1111/j.1551-2916.2005.00836.x

V. Buscaglia, M.T. Buscaglia, M. Viviani et al., J. Eur. Ceram. Soc. 25, 3059 (2005), https://doi.org/10.1016/j.jeurceramsoc.2005.03.190

A.V. Polotai, A.V. Ragulya, C.A. Randall, Ferroelectrics 288, 93 (2003), https://doi.org/10.1080/00150190390211972

D. McCauley, R.E. Newnham, C.A. Randall, J. Am. Ceram. Soc. 81, 979 (1998), https://doi.org/10.1111/j.1151-2916.1998.tb02435.x

C.A. Randall, J. Ceram. Soc. Jpn. 109, S2 (2001), https://doi.org/10.2109/jcersj.109.S2

M.H. Frey, Z. Xu, P. Han, D.A. Payne, Ferroelectrics 206, 337 (1998), https://doi.org/10.1080/00150199808009168

M. Tanaka, Y. Makino, Ferroelectrics Lett. 24, 13 (1998), https://doi.org/10.1080/07315179808204451

Y. Fukui, S. Izumisawa, T. Atake, A. Hamano, T. Shirakami, H. Ikawa, Ferroelectrics 203, 227 (1997), https://doi.org/10.1080/00150199708012849

J.L. Zhu, S. Lin, S.M. Feng, L.J. Wang, Q.Q. Liu, J. Appl. Phys. 112, 124107 (2012), https://doi.org/10.1063/1.4770358

Y.L. Li, Z.Y. Liao, F. Fang, X.H. Wang, L.T. Li, J. Zhu, Appl. Phys. Lett. 105, 182901 (2014), https://doi.org/10.1063/1.4901169

L.D. Landau, E.M. Lifshitz, Statistical Physics, Pergamon Press, Oxford 1980

P. Lv, L.H. Wang, C.S. Lynch, Acta Mater. 137, 93 (2017), https://doi.org/10.1016/j.actamat.2017.07.031

W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966), https://doi.org/10.1111/j.1151-2916.1966.tb13144.x

D. Ricinschi, V. Tura, L. Mitoseriu, M. Okuyama, J. Phys. Condens. Matter 11, 1601 (1999), https://doi.org/10.1088/0953-8984/11/6/024

C. Fang, D.X. Zhou, S.P. Gong, W. Luo, Phys. Status Solidi B 247, 219 (2010), https://doi.org/10.1002/pssb.200945421

C. Fang, L.Y. Chen, D.X. Zhou, Physica B 409, 83 (2013), https://doi.org/10.1016/j.physb.2012.10.016

C. Fang, D.X. Zhou, S.P. Gong, Physica B 406, 1317 (2011), https://doi.org/10.1016/j.physb.2011.01.024

Y.L. Li, L.E. Cross, L.Q. Chen, J. Appl. Phys. 98, 064101 (2005), https://doi.org/10.1063/1.2042528

S. Lin, T.Q. Lü, C.Q. Jin, X.H. Wang, Phys. Rev. B 74, 134115 (2006), https://doi.org/10.1103/PhysRevB.74.134115

T.Y. Sun, X.H. Wang, H. Wang, X.Q. Zhang, Z.D. Cheng, C.Q. Sun, L.T. Li, J. Am. Ceram. Soc. 93, 2571 (2010), https://doi.org/10.1111/j.1551-2916.2010.03900.x

J.H. Qiu, Q. Jiang, J. Appl. Phys. 105, 034110 (2009), https://doi.org/10.1063/1.3063811

V.I. Arnold, Catastrophe Theory, 3rd ed. Springer Verlag, Berlin 1992, https://doi.org/10.1007/978-3-642-58124-3

D.P.L. Castringiano, S.A. Hayes, Catastrophe Theory, Taylor & Francis Group, CRC press, 2018

A.M. Prohorov, Y.M. Gufan, E.S. Larin, E.G. Rudashevski, V.B. Shirokov, Sov. Phys. Dokl. 29, 656 (1984)

E.I. Kut'in, V.L. Lorman, S.V. Pavlov, Sov. Phys. Usp. 34, 497 (1991)

P. Toledano, V. Dmitriev, Reconstructive Phase Transitions in Crystals and Quasicrystals, World Scientific, Singapore 1996

I.A. Sergienko, Y.M. Gufan, S. Urazhdin, Phys. Rev. B 65, 144104 (2002), https://doi.org/10.1103/PhysRevB.65.144104

G. Gaeta, Ann. Phys. 312, 511 (2004), https://doi.org/10.1016/j.aop.2004.04.001

G. Gaeta, J. Math. Phys. 56, 083504 (2015), https://doi.org/10.1063/1.4927425

L. Li, I.-H. Kim, K.-O. Jang, K.-S. Ri, J.-C. Cha, J. Appl. Phys. 114, 034104 (2013), https://doi.org/10.1063/1.4813489

I.-H. Kim, K.-O. Jang, I.-H. Kim, P.-S. O, S.-N. Ju, Physica B 690, 416157 (2024), https://doi.org/10.1016/j.physb.2024.416157

S.V. Pavlov, Moscow Univ. Phys. Bull. 71, 508 (2016)

V.M. Talanov, V.B. Shirokov, M.V. Talanov, Acta Cryst. A 71, 301 (2015), https://doi.org/10.1107/S2053273315003848

I.-H. Kim, K.-O. Jang, I.-H. Kim, L. Li, Phase Transit. 91, 239 (2018), https://doi.org/10.1080/01411594.2017.1350960

I.-H. Kim, I.-H. Kim, K.-O. Jang, K.-R. Sin, C.-J. Kim, Phase Transit. 91, 1189 (2018), https://doi.org/10.1080/01411594.2018.1536269

I.-H. Kim, I.-H. Kim, S.-G. Im, K.-O. Jang, Physica B 639, 413961 (2022), https://doi.org/10.1016/j.physb.2022.413961

K.-O. Jang, I.-H. Kim, I.-H. Kim, S.-G. Im, K.-R. Sin, C.-J. Kim, Phase Transit. 93, 439 (2020), https://doi.org/10.1080/01411594.2020.1746965

P. Tolédano, EPJ Web Conf. 22, 00007 (2012), https://doi.org/10.1051/epjconf/20122200007

K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989), https://doi.org/10.1111/j.1151-2916.1989.tb07706.x

W. Martienssen, H. Warlimont, Springer Handbook of Condensed Matter and Materials Data] 10.1007/3-540-30437-1, Springer, Berlin 2005}

I.N. Leontyev, O.E. Fesenko, N.G. Leontyev, B. Dkhil, Appl. Phys. Lett. 96, 142904 (2010), https://doi.org/10.1063/1.3386537

T. Yamada, J. Appl. Phys. 43, 328 (1972), https://doi.org/10.1063/1.1661117

A.Y. Emelyanov, N.A. Pertsev, S. Hoffmann-Eifert, U. Bottger, R. Waser, J. Electroceram. 9, 5 (2002), https://doi.org/10.1023/A:1021665300233

X. H. Wang, H. Wen, R. Z. Chen, H. Zhou, L. T. Li, in: IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conf., Montréal, Canada, 2004, p. 324

A.I. Sokolov, Phys. Solid State 51, 351 (2009), https://doi.org/10.1134/S1063783409020255