Synthesis of MgAl2O4 Spinel in MgO–Al2O3 and MgO–Al2O3–Al Systems via HPHT Sintering
Main Article Content
Abstract
The synthesis of magnesium–aluminum spinel (MgAl2O4) by high-pressure–high-temperature sintering within the MgO–Al2O3 and MgO–Al2O3–Al systems has been investigated. The experiments were carried out at a pressure of 2 GPa and temperatures ranging from 400 to 1600°C. Increasing the sintering temperature resulted in a higher MgAl2O4 content in both MgO–Al2O3 and MgO–Al2O3–Al systems. This, in turn, led to an increase in the hardness of the synthesized samples. The results suggest that high-pressure–high-temperature synthesis requires a sintering temperature of at least 1000°C in a pressure range of 2.0–5.0 GPa to achieve optimal physical properties.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Ganesh, Int. Mater. Rev. 58, 63 (2013), https://doi.org/.1179/1743280412Y.0000000001
P. Fu, We. Lu, W. Lei, Y. Xu, X. Wang, J. Wu, Ceram. Int. 39, 2481 (2013), https://doi.org/.1016/j.ceramint.2012.09.006
M.F. Zawrah, H. Hamaad, S. Meky, Ceram. Int. 33, 969 (2007), https://doi.org/.1016/j.ceramint.2006.02.015
A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R.~Simon, J. Alloys Compd. 462, 142 (2009), https://doi.org/.1016/j.jallcom.2007.07.101
J. Duan, X. Wang, Y. Zhang, H. Gao, Y.~Xie, J. Yang, J. Mater. Sci. Chem. Eng. 7, 1 (2019), https://doi.org/.4236/msce.2019.73001
T. Irifune, K. Fujino, E. Ohtani, Nature 349, 409 (1991), https://doi.org/.1038/349409a0
T. Yamanaka, A. Uchida, Y. Nakamoto, Am. Mineral. 93, 1874 (2008), https://doi.org/.2138/am.2008.2934
S. Ono, T. Kikegawa, Y. Ohishi, Phys. Chem. Miner. 33, 200 (2006), https://doi.org/.1007/s00269-006-0068-z
T.C. Lu, X.H. Chang, J.Q. Qi, X.J. Luo, Q.M. Wei, S. Zhu, K. Sun, J. Lian, L.M.~Wang, Appl. Phys. Lett. 88, 213110 (2006), https://doi.org/.1063/1.2207571
V.M. Sreekumar, K.R. Ravi, R.M. Pillai, B.C. Pai, M. Chakraborty, Metall. Mater. Trans. A 39, 919 (2008), https://doi.org/.1007/s11661-007-9448-3
E.B. Watson, J.D. Price, Geochim. Cosmochim. Acta 66, 2123 (2002), https://doi.org/.1016/s0016-7037(02)00827-x
Y.Y. Rumiantseva, T. Polczyk, S.O.~Lysovenko, J. Superhard Mater. 46, 415 (2024), https://doi.org/.3103/S106345762406008X
ISO Standard no. 14577-1:2015, "Metallic materials — Instrumented indentation test for hardness and materials parameters. Part 1: Test method", International Organization for Standardization, Geneva 2015, https://www.iso.org/standard/56626.html
A.T. Tran, V.T. Tran, N.T.M. Nguyet, A.T.-Q. Luong, T. Van Le, N.H.H. Phuc, ACS omega 8, 36253 (2023), https://doi.org/.1021/acsomega.3c04782
A. Hänström, P. Lazor, J. Alloys Compd. 305, 209 (2000), https://doi.org/.1016/S0925-8388(00)00736-2
J.A. Moriarty, D.A. Young, M. Ross, Phys. Rev. B 30, 578 (1984), https://doi.org/.1103/PhysRevB.30.578
R.K. Bordia, H. Camacho-Montes, in: Ceramics and Composites Processing Methods] 10.1002/9781118176665.ch1, Eds. N.P. Bansal, A.R. Boccaccini, John Wiley & Sons, Hoboken (NJ) 2012 ch. 1, p. 1
P. Patnaik, Handbook of Inorganic Chemicals McGraw-Hill, 2003
Y.-M. Chiang, D. Birnie III, W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, John Wiley & Sons, 1997
F. Wei, B. Cheng, L.T. Chew, J.J. Lee, K.H. Cheong, J. Wu, Q. Zhu, C.C. Tan, J. Mater. Res. Technol. 20, 4130 (2022), https://doi.org/.1016/j.jmrt.2022.09.006
K.Y.N. Rao, K.M. Kaleemulla, Int. J. Mech. Prod. Eng. Res. Dev. 8, 355 (2018), https://doi.org/.24247/ijmperdapr201839
X.J. Ren, R.M. Hooper, C. Griffiths, J.L.~Henshall, Philos. Mag. A 82, 2113 (2002), https://doi.org/.1080/01418610208235721
B.M. Moshtaghioun, J.I. Peña, J. Eur. Ceram. Soc. 39, 3208 (2019), https://doi.org/.1016/j.jeurceramsoc.2019.04.015
N. Obradovic, W.G. Fahrenholtz, C. Corlett et al., Materials 14, 7674 (2021), https://doi.org/.3390/ma14247674