Synthesis of MgAl2O4 Spinel in MgO–Al2O3 and MgO–Al2O3–Al Systems via HPHT Sintering

Main Article Content

Y. Rumiantseva
S. Lysovenko
A. Grzechnik
Ł. Wachnicki
A. Pieniążek
M. Gawron
P. Кlimczyk
Y. Zhydachevskyy

Abstract

The synthesis of magnesium–aluminum spinel (MgAl2O4) by high-pressure–high-temperature sintering within the MgO–Al2O3 and MgO–Al2O3–Al systems has been investigated. The experiments were carried out at a pressure of 2 GPa and temperatures ranging from 400 to 1600°C. Increasing the sintering temperature resulted in a higher MgAl2O4 content in both MgO–Al2O3 and MgO–Al2O3–Al systems. This, in turn, led to an increase in the hardness of the synthesized samples. The results suggest that high-pressure–high-temperature synthesis requires a sintering temperature of at least 1000°C in a pressure range of 2.0–5.0 GPa to achieve optimal physical properties.

Article Details

How to Cite
[1]
Y. Rumiantseva, “Synthesis of MgAl2O4 Spinel in MgO–Al2O3 and MgO–Al2O3–Al Systems via HPHT Sintering”, Acta Phys. Pol. A, vol. 147, no. 6, p. 456, Jul. 2025, doi: 10.12693/APhysPolA.147.456.
Section
Regular segment

References

I. Ganesh, Int. Mater. Rev. 58, 63 (2013), https://doi.org/.1179/1743280412Y.0000000001

P. Fu, We. Lu, W. Lei, Y. Xu, X. Wang, J. Wu, Ceram. Int. 39, 2481 (2013), https://doi.org/.1016/j.ceramint.2012.09.006

M.F. Zawrah, H. Hamaad, S. Meky, Ceram. Int. 33, 969 (2007), https://doi.org/.1016/j.ceramint.2006.02.015

A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R.~Simon, J. Alloys Compd. 462, 142 (2009), https://doi.org/.1016/j.jallcom.2007.07.101

J. Duan, X. Wang, Y. Zhang, H. Gao, Y.~Xie, J. Yang, J. Mater. Sci. Chem. Eng. 7, 1 (2019), https://doi.org/.4236/msce.2019.73001

T. Irifune, K. Fujino, E. Ohtani, Nature 349, 409 (1991), https://doi.org/.1038/349409a0

T. Yamanaka, A. Uchida, Y. Nakamoto, Am. Mineral. 93, 1874 (2008), https://doi.org/.2138/am.2008.2934

S. Ono, T. Kikegawa, Y. Ohishi, Phys. Chem. Miner. 33, 200 (2006), https://doi.org/.1007/s00269-006-0068-z

T.C. Lu, X.H. Chang, J.Q. Qi, X.J. Luo, Q.M. Wei, S. Zhu, K. Sun, J. Lian, L.M.~Wang, Appl. Phys. Lett. 88, 213110 (2006), https://doi.org/.1063/1.2207571

V.M. Sreekumar, K.R. Ravi, R.M. Pillai, B.C. Pai, M. Chakraborty, Metall. Mater. Trans. A 39, 919 (2008), https://doi.org/.1007/s11661-007-9448-3

E.B. Watson, J.D. Price, Geochim. Cosmochim. Acta 66, 2123 (2002), https://doi.org/.1016/s0016-7037(02)00827-x

Y.Y. Rumiantseva, T. Polczyk, S.O.~Lysovenko, J. Superhard Mater. 46, 415 (2024), https://doi.org/.3103/S106345762406008X

ISO Standard no. 14577-1:2015, "Metallic materials — Instrumented indentation test for hardness and materials parameters. Part 1: Test method", International Organization for Standardization, Geneva 2015, https://www.iso.org/standard/56626.html

A.T. Tran, V.T. Tran, N.T.M. Nguyet, A.T.-Q. Luong, T. Van Le, N.H.H. Phuc, ACS omega 8, 36253 (2023), https://doi.org/.1021/acsomega.3c04782

A. Hänström, P. Lazor, J. Alloys Compd. 305, 209 (2000), https://doi.org/.1016/S0925-8388(00)00736-2

J.A. Moriarty, D.A. Young, M. Ross, Phys. Rev. B 30, 578 (1984), https://doi.org/.1103/PhysRevB.30.578

R.K. Bordia, H. Camacho-Montes, in: Ceramics and Composites Processing Methods] 10.1002/9781118176665.ch1, Eds. N.P. Bansal, A.R. Boccaccini, John Wiley & Sons, Hoboken (NJ) 2012 ch. 1, p. 1

P. Patnaik, Handbook of Inorganic Chemicals McGraw-Hill, 2003

Y.-M. Chiang, D. Birnie III, W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, John Wiley & Sons, 1997

F. Wei, B. Cheng, L.T. Chew, J.J. Lee, K.H. Cheong, J. Wu, Q. Zhu, C.C. Tan, J. Mater. Res. Technol. 20, 4130 (2022), https://doi.org/.1016/j.jmrt.2022.09.006

K.Y.N. Rao, K.M. Kaleemulla, Int. J. Mech. Prod. Eng. Res. Dev. 8, 355 (2018), https://doi.org/.24247/ijmperdapr201839

X.J. Ren, R.M. Hooper, C. Griffiths, J.L.~Henshall, Philos. Mag. A 82, 2113 (2002), https://doi.org/.1080/01418610208235721

B.M. Moshtaghioun, J.I. Peña, J. Eur. Ceram. Soc. 39, 3208 (2019), https://doi.org/.1016/j.jeurceramsoc.2019.04.015

N. Obradovic, W.G. Fahrenholtz, C. Corlett et al., Materials 14, 7674 (2021), https://doi.org/.3390/ma14247674