Investigation of Temperature-Dependent Photoluminescence Mechanisms in Porous Silicon Layer for Optoelectronic Devices
Main Article Content
Abstract
This study examines how the variation of temperature affects the photoluminescence properties of porous silicon, offering insights into surface, defects, and carrier dynamics interactions. Porous layers are obtained using an electrochemical method, revealing two notable photoluminescence emission peaks. The study suggests two different non-radiative recombination processes based on intensity changes with temperature. Surface conditions contribute to the thermal quenching of the photoluminescence at low temperatures (10–60 K), while non-radiative recombination is linked to the thermal escape of excitons at higher temperatures (60–300 K). A comprehensive understanding of these processes is essential for effective integration of optoelectronic devices.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R. Vercauteren, G. Scheen, J.-P. Raskin, L.A. Francis, Sens. Actuators A Phys. 318, 112486 (2020), https://doi.org/10.1016/j.sna.2020.112486
D. Dovzhenko, I. Martynov, P. Samokhvalov, E. Osipov, M. Lednev, A. Chistyakov, A. Karaulov, I. Nabiev, Opt. Express 28, 22705 (2020), https://doi.org/10.1364/OE.401197
T. Thomas, Y. Kumar, J.A.R. Ramón, V. Agarwal, S.S. Guzmán, R. Reshmi, S. Pushpan, S.L. Loredo, K.C. Sanal, Vacuum 184, 109983 (2021), https://doi.org/10.1016/j.vacuum.2020.109983
D. Yan, S. Xia, S. Li, S. Wang, M. Tan, S. Liu, Mater. Res. Bull. 134, 111109 (2021), https://doi.org/10.1016/j.materresbull.2020.111109
M.H. Kareem, A.M.A. Hussein, H.T. Hussein, J. Mech. Behav. Mater. 30, 257 (2021), https://doi.org/10.1515/jmbm-2021-0027
C.W. Ferreira, R. Vercauteren, L.A. Francis, Micromachines 13, 10 (2021), https://doi.org/10.3390/mi13010010
L.T. Canham in: Porous Silicon for Biomedical Applications, Ed. H.A. Santos, Elsevier, 2014, p. 3
V.M. Rotshteyn, T.K. Turdaliev, K.B. Ashurov, Appl. Sol. Energy 57, 480 (2021), https://doi.org/10.3103/S0003701X21060153
S. Rahmouni, L. Zighed, S. Chaguetmi et al., Optoelectron. Adv. Mater. 12, 553 (2018)
S. Rahmouni, N. Boukhanoufa, I. Tifouti, H. Bendjeffal, B. Mariane, Silicon 15, 3261 (2023), https://doi.org/10.1007/s12633-022-02261-x
Y. Afandi, G. Parish, A. Keating, Mater. Sci. Semicond. Process. 138, 106314 (2022), https://doi.org/10.1016/j.mssp.2021.106314
S. Sharma, K.K. Jain, A. Sharma, Mater. Sci. Appl. 6, 1145 (2015), https://doi.org/10.4236/msa.2015.612113
J.M. Lauerhaas, G.M. Credo, J.L. Heinrich, M.J. Sailor, J. Am. Chem. Soc. 114, 1911 (1992), https://doi.org/10.1021/ja00031a072
M.A. Almeshaal, B. Abdouli, K. Choubani, L. Khezami, M.B. Rabha, Silicon 15, 6025 (2023), https://doi.org/10.1007/s12633-023-02482-8
F.K. Başak, E. Kayahan, Opt. Mater. 124, 111990 (2022), https://doi.org/10.1016/j.optmat.2022.111990
Z. Yan, J. Jiang, Y. Zhang, D. Yang, N. Du, Mater. Today Nano 18, 100175 (2022), https://doi.org/10.1016/j.mtnano.2022.100175
L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990), https://doi.org/10.1063/1.103561
R. Ramadan, R.J. Martín-Palma, Nanomaterials 12, 271 (2022), https://doi.org/10.3390/nano12020271
M. Rahmani, S. Amdouni, M.-A. Zaibi, A. Meftah, J. Mater. Sci. Mater. Electron. 32, 4321 (2021), https://doi.org/10.1007/s10854-020-05175-9
F.I.H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahri, R. Chtourou, RSC Adv. 9, 5206 (2019), https://doi.org/10.1039/C8RA09939A
P. Elia, E. Nativ-Roth, Y. Zeiri, Z. Porat, Microporous Mesoporous Mater. 225, 465 (2016), https://doi.org/10.1016/j.micromeso.2016.01.007
M. Szymura, M. Duda, M. Karpińska, T. Kazimierczuk, R. Minikayev, K. Sobczak, M. Parlińska-Wojtan, J. Phys. Chem. C 127, 6768 (2023), https://doi.org/10.1021/acs.jpcc.3c00536
E.C. Larkins, J.S. Harris Jr., in: Molecular Beam Epitaxy: Applications to Key Materials, Ed. R.F.C. Farrow, Noyes, Park Ridge (NJ) 1995, p. 114, https://doi.org/10.1016/B978-081551371-1.50004-4
S. Burkner, J.D. Ralston, S. Weisser, J. Rosenzweig, E.C. Larkins, R.E. Sah, J. Fleissner, IEEE Photon. Technol. Lett. 7, 941 (1995), https://doi.org/10.1109/68.414662
H. Diesinger, A. Bsiesy, R. Hérino, B. Gelloz, Mater. Sci. Eng. B 69, 167 (2000), https://doi.org/10.1016/S0921-5107(99)00251-2
S. Rahmouni, H. Boubekri, H. Bendjeffal et al., Silicon 16, 4253 (2024), https://doi.org/10.1007/s12633-024-02996-9
M. Çadirci, J. Lumin. 228, 117551 (2020), https://doi.org/10.1016/j.jlumin.2020.117551
R.C. Egeberg, E. Veje, A. Ferreira Da Silva, I. Pepe, A. Santos Alves, J. Porous Mater. 7, 173 (2000), https://doi.org/10.1023/A:1009674401781
W. Lu, A.T. Tarekegne, Y. Ou, S. Kamiyama, H. Ou, Sci. Rep. 9, 16333 (2019), https://doi.org/10.1038/s41598-019-52871-6
H. Rinnert, O. Jambois, M. Vergnat, J. Appl. Phys. 106, 023501 (2009), https://doi.org/10.1063/1.3169513
Q. Yuan, B. Liang, C. Zhou, Y. Wang, Y. Guo, S. Wang, G. Fu, Y.I. Mazur, M.E. Ware, G.J. Salamo, Nanoscale. Res. Lett. 13, 387 (2018), https://doi.org/10.1186/s11671-018-2792-y
H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao, Y. Bai, J. Mater. Chem. C 10, 13590 (2022), https://doi.org/10.1039/D2TC01869A
A. Mabrouk, N. Lorrain, M.L. Haji, M. Oueslati, Superlattices Microstruct. 77, 219 (2015), https://doi.org/10.1016/j.spmi.2014.10.028
G.-E. Weng, B.-P. Zhang, M.-M. Liang et al., Funct. Mater. Lett. 06, 1350021 (2013), https://doi.org/10.1142/S1793604713500215
D. Zhao, B. Li, C. Wu, Y.-M. Lu, D. Shen, J. Zhang, X. Fan, J. Lumin. 119-120, 304 (2006), https://doi.org/10.1016/j.jlumin.2006.01.011
S. Kobayashi, R. Akiyama, T. Furuta, M. Moriwaki, Molecules Online 2, 35 (1998), https://doi.org/10.1007/s007830050052
S. Ten, F. Henneberger, M. Rabe, N. Peyghambarian, Phys. Rev. B 53, 12637 (1996), https://doi.org/10.1103/PhysRevB.53.12637
H. Jin, L.-G. Zhang, Z.-H. Zheng, L.-N. An, Y.-M. Lu, J.-Y. Zhang, X.-W. Fan, D.-Z. Shen, Chin. Phys. Lett. 22, 1518 (2005), https://cpl.iphy.ac.cn/en/article/id/43130
M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov et al., Appl. Sci. 10, 1038 (2020), https://doi.org/10.3390/app10031038
J. Toulouse, J. Light. Technol. 23, 3625 (2005), https://doi.org/10.1109/JLT.2005.855877
M.A. Fakhri, B.G. Rashid, N.H. Numan, B.A. Bader, F.G. Khalid, T.A. Zaker, E.T. Salim, AIP Conf. Proc. 2045, 020016 (2018), https://doi.org/10.1063/1.5080829
S.A. Abdulgafar, Y.M. Hassan, M.A. Ibrahem, J. Mater. Sci. Mater. Electron. 34, 979 (2023), https://doi.org/10.1007/s10854-023-10436-4