Comprehensive Study of Electronic, Thermal and Magnetic Properties of Bilayer Phosphorene Nanoribbons

Main Article Content

S. Fathi
M. Zare
A. Avazpour
P. Zamani

Abstract

The electronic, thermal, and magnetic properties of zigzag bilayer phosphorene nanoribbons are investigated using the Green's function approach within the tight-binding model. These materials exhibit a fully reversible metal–to–semiconductor (or insulator) phase transition when subjected to a perpendicular electric field. In the absence of interlayer coupling, the band structure of zigzag bilayer phosphorene nanoribbons features two non-tilted Dirac cones. However, when interlayer coupling is introduced, two tilted Dirac cones emerge at the crossing points, exhibiting the lack of electron–hole symmetry. Significant tuning of the Fermi velocity and effective mass is achieved by adjusting the external bias voltage. At specific critical voltages, electron localization behavior is observed. Thermal and magnetic properties of zigzag bilayer phosphorene nanoribbons are also studied using the continuum model. Both the Pauli paramagnetic susceptibility and electronic heat capacity of zigzag bilayer phosphorene nanoribbons are found to be tunable by modifying the ribbon width and applying an electric field. The demonstrated potential for simultaneous control of thermal and magnetic properties through an experimentally feasible electric field paves the way for developing novel thermomagnetic devices based on zigzag bilayer phosphorene nanoribbons. Additionally, the flexibility of band tunability in zigzag bilayer phosphorene nanoribbons enhances their potential applications in next-generation optoelectronic nanodevices.


Article Details

How to Cite
[1]
S. Fathi, M. Zare, A. Avazpour, and P. Zamani, “Comprehensive Study of Electronic, Thermal and Magnetic Properties of Bilayer Phosphorene Nanoribbons”, Acta Phys. Pol. A, vol. 147, no. 5, p. 408, Jun. 2025, doi: 10.12693/APhysPolA.147.408.
Section
Regular segment

References

L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9, 372 (2014), https://doi.org/10.1038/nnano.2014.35

H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014), https://doi.org/10.1021/nn501226z

A. Castellanos-Gomez, Nat. Photon. 10, 202 (2016), https://doi.org/10.1038/nphoton.2016.53

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photon. 8, 899 (2014), https://doi.org/10.1038/nphoton.2014.271

M. Zare, L. Majidi, R. Asgari, Phys. Rev. B 96, 115426 (2017), https://doi.org/10.1103/PhysRevB.95.115426

A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, A.H. Castro Neto, Nat. Rev. Mater. 1, 16061 (2016), https://doi.org/10.1038/natrevmats.2016.61

M. Batmunkh, M. Bat-Erdene, J.G. Shapter, Adv. Mater. 28, 8586 (2016), https://doi.org/10.1002/adma.201602254

M. Zare, B.Z. Rameshti, F.G. Ghamsari, R. Asgari, Phys. Rev. B 95, 045422 (2017), https://doi.org/10.1103/PhysRevB.95.045422

D.-K. Seo, R. Hoffmann, J. Solid State Chem. 147, 26 (1999), https://doi.org/10.1006/jssc.1999.8140

W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, Nano Res. 7, 853 (2014), https://doi.org/10.1007/s12274-014-0446-7

X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Nat. Nanotechnol. 10, 517 (2015), https://doi.org/10.1038/nnano.2015.71

H. Liu, Y. Du, Y. Deng, P.D. Ye, Chem. Soc. Rev. 44, 2732 (2015), https://doi.org/10.1039/C4CS00257A

S. Das, M. Demarteau, A. Roelofs, ACS Nano 8, 11730 (2014), https://doi.org/10.1021/nn505868h

M.V. Kamalakar, B.N. Madhushankar, A. Dankert, S.P. Dash, Small 11, 2209 (2015), https://doi.org/10.1002/smll.201402900

R. Fei, L. Yang, Nano Lett. 14, 2884 (2014), https://doi.org/10.1021/nl500935z

V. Tran, R. Soklaski, Y. Liang, L. Yang, Phys. Rev. B 89, 235319 (2014), https://doi.org/10.1103/PhysRevB.89.235319

Y. Du, C. Ouyang, S. Shi, M. Lei, J. Appl. Phys. 107, 093718 (2010), https://doi.org/10.1063/1.3386509

L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, M. Pan, Nano Lett. 14, 6400 (2014), https://doi.org/10.1021/nl502892t

A.S. Rodin, A. Carvalho, A.H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014), https://doi.org/10.1103/PhysRevLett.112.176801

A. Carvalho, A.S. Rodin, A.H. Castro Neto, Europhys. Lett. 108, 47005 (2014), https://doi.org/10.1209/0295-5075/108/47005

X. Peng, A. Copple, Q. Wei, J. Appl. Phys. 116, 144301 (2014), https://doi.org/10.1063/1.4897461

V. Tran, L. Yang, Phys. Rev. B 89, 245407 (2014), https://doi.org/10.1103/PhysRevB.89.245407

J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, Q.J. Zhang, Sci. Rep. 4, 6452 (2014), https://doi.org/10.1038/srep06452

M. Ezawa, New J. Phys. 16, 115004 (2014), https://doi.org/10.1088/1367-2630/16/11/115004

Q. Wu, L. Shen, M. Yang, Y. Cai, Z. Huang, Y.P. Feng, Phys. Rev. B 92, 035436 (2015), https://doi.org/10.1103/PhysRevB.92.035436

E.T. Sisakht, M.H. Zare, F. Fazileh, Phys. Rev. B 91, 085409 (2015), https://doi.org/10.1103/PhysRevB.91.085409

P.M. Das, G. Danda, A. Cupo, W.M. Parkin, L. Liang, N. Kharche, X. Ling, S. Huang, M.S. Dresselhaus, V. Meunier, M. Drndic, ACS Nano 10, 5687, (2016), https://doi.org/10.1021/acsnano.6b02435

M.C. Watts, L. Picco, F.S. Russell-Pavier, P.L. Cullen, T.S. Miller, S.P. Bartu'{s, O.D. Payton, N.T. Skipper, V. Tileli, C.A. Howard, Nature 568, 216 (2019), https://doi.org/10.1038/s41586-019-1074-x

J. He, D. He, Y. Wang, Q. Cui, M.Z. Bellus, H.Y. Chiu, H. Zhao, ACS Nano 9, 6436 (2015), https://doi.org/10.1021/acsnano.5b02104

R.J. Suess, E. Leong, J.L. Garrett, T. Zhou, R. Salem, J.N. Munday, T.E. Murphy, M. Mittendorff, 2D Mater. 3, 041006 (2016), https://doi.org/10.1088/2053-1583/3/4/041006

X. Han, H.M. Stewart, S.A. Shevlin, C.R. Catlow, Z.X. Guo, Nano Lett. 14, 4607 (2014), https://doi.org/10.1021/nl501658d

Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson, G. Ceder, G. Hautier, A. Jain, G.J. Snyder, npj Comput. Mater. 3, 8 (2017), https://doi.org/10.1038/s41524-017-0013-3

D.C. Elias, R.V. Gorbachev, A.S. Mayorov et al., Nat. Phys. 7, 701 (2011), https://doi.org/10.1038/nphys2049

C. Attaccalite, A. Rubio, Phys. Status Solidi B 246, 2523 (2009), https://doi.org/10.1002/pssb.200982335

F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Phys. Rev. B 84, 195404 (2011), https://doi.org/10.1103/PhysRevB.84.195404

W.-J. Jang, H. Kim, Y.-R. Shin, M. Wang, S.K. Jang, M. Kim, S. Lee, S.-W. Kim, Y.J. Song, S.J. Kahng, Carbon 74, 139 (2014), https://doi.org/10.1016/j.carbon.2014.03.015

A. Díaz-Fernández, L. Chico, J.W. González, F. Domínguez-Adame, Sci. Rep. 7, 8058 (2017), https://doi.org/10.1038/s41598-017-08188-3

X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008), https://doi.org/10.1038/nnano.2008.199

C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie, Nat. Phys. 4, 213 (2008), https://doi.org/10.1038/nphys890

C. Hwang, D.A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, A. Lanzara, Sci. Rep. 2, 590 (2012), https://doi.org/10.1038/srep00590

J.-H. Yuan, Z. Cheng, Q.-J. Zeng, J.-P. Zhang, J.-J. Zhang, J. Appl. Phys. 110, 103706 (2011), https://doi.org/10.1063/1.3660748

A. Raoux, M. Polini, R. Asgari, A.R. Hamilton, R. Fazio, A.H. MacDonald, Phys. Rev. B 81, 073407 (2010), https://doi.org/10.1103/PhysRevB.81.073407

J.R.F. Lima, Phys. Lett. A 379, 179 (2015), https://doi.org/10.1016/j.physleta.2014.11.005

J.R.F. Lima, A.L. Barbosa, C. Bezerra, L.F.C. Pereira, Phys. E: Low-dimen. Syst. Nanostruct. 97, 105 (2018), https://doi.org/10.1016/j.physe.2017.10.019

F. Sattari, S. Mirershadi, Superlattices Microstruct. 111, 438 (2017), https://doi.org/10.1016/j.spmi.2017.06.061

A.R.S. Lins, J.R.F. Lima, Carbon 160, 353 (2020), https://doi.org/10.1016/j.carbon.2020.01.031

P. Ghosh, P. Roy, Eur. Phys. J. Plus 132, 32 (2017), https://doi.org/10.1140/epjp/i2017-11323-2

S. Lee, F. Yang, J. Suh et al., Nat. Commun. 6, 8573 (2015), https://doi.org/10.1038/ncomms9573

H. Mousavi, J. Khodadadi, Superlattices Microstruct. 88, 434 (2015), https://doi.org/10.1016/j.spmi.2015.10.007

D. Çakir, C. Sevik, F.M. Peeters, Phys. Rev. B 92, 165406 (2015), https://doi.org/10.1103/PhysRevB.92.165406

B. Jhun, C.-H. Park, Phys. Rev. B 96, 085412 (2017), https://doi.org/10.1103/PhysRevB.96.085412

L.L. Li, D. Moldovan, W. Xu, F.M. Peeters, Phys. Rev. B 96, 155425 (2017), https://doi.org/10.1103/PhysRevB.96.155425

A.N. Rudenko, S. Yuan, M.I. Katsnelson, Phys. Rev. B 92, 085419 (2016), https://doi.org/10.1103/PhysRevB.92.085419

K. Dolui, S. Quek, Sci. Rep. 5, 11699 (2015), https://doi.org/10.1038/srep11699

S. Yuan, E. van Veen, M.I. Katsnelson, R. Rold&aacutte;an, Phys. Rev. B 93, 245433 (2016), https://doi.org/10.1103/PhysRevB.93.245433

D. Zhang, W. Lou, M. Miao, S.-C. Zhang, K. Chang, Phys. Rev. Lett. 111, 156402 (2013), https://doi.org/10.1103/PhysRevLett.111.156402

B. Deng, V. Tran, Y. Xie et al., Nat. Comun. 8, 14474 (2017), https://doi.org/10.1038/ncomms14474

T.-N. Do, P.-H. Shih, G. Gumbs, D. Huang, Phys. Rev. B 103, 115408 (2021), https://doi.org/10.1103/PhysRevB.103.115408

M. Zare, E. Sadeghi, Phys. Rev. B 98, 205401 (2018), https://doi.org/10.1103/PhysRevB.98.205401

A. Maity, A. Singh, P. Sen, A. Kibey, A. Kshirsagar, D.G. Kanhere, Phys. Rev. B 94, 075422 (2016), https://doi.org/10.1103/PhysRevB.94.075422

E. Taghizadeh Sisakht, M.H. Zare, F. Fazileh, Phys. Rev. B 91, 085409 (2015), https://doi.org/10.1103/PhysRevB.91.085409

R. Ma, H. Geng, W.Y. Deng, M.N. Chen, L. Sheng, D.Y. Xing, Phys. Rev. B 94, 125410 (2016), https://doi.org/10.1103/PhysRevB.94.125410

B. Ostahie, A. Aldea, Phys. Rev. B 93, 075408 (2015), https://doi.org/10.1103/PhysRevB.93.075408

B. Zhou, B. Zhou, X. Zhou, G. Zhou, J. Phys. D Appl. Phys. 50, 045106 (2017), https://doi.org/10.1088/1361-6463/aa52b5

L. Yang, W. Mi, X. Wang, J. Alloys Compd. 662, 528 (2016), https://doi.org/10.1016/j.jallcom.2015.12.095

H. Zhang, Y. Li, J. Hou, A. Du, Z. Chen, Nano Lett. 16, 6124 (2016), https://doi.org/10.1021/acs.nanolett.6b02335

A. Carvalho, A. Rodin, A.C. Neto, Europhys. Lett. 108, 47005 (2014), https://doi.org/10.1209/0295-5075/108/47005

H. Guo, N. Lu, J. Da, X. Wu, X.C. Zeng, J. Phys. Chem. C 118, 14051 (2014), https://doi.org/10.1021/jp505257g

T. Mertz, P. Wunderlich, S. Bhattacharyya, F. Ferrari, R. Valentí, npj Comput. Mater. 8, 66 (2022), https://doi.org/10.1038/s41524-022-00745-3

K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Nat. Commun. 5, 4966 (2014), https://doi.org/10.1038/ncomms5966

N. Xuan, A. Xie, B. Liu, Z. Sun, Carbon 201, 529 (2023), https://doi.org/10.1016/j.carbon.2022.09.038

C. Weeks, M. Franz, Phys. Rev. B 82, 085310 (2010), https://doi.org/10.1103/PhysRevB.82.085310

D. Geng, H. Zhou, S. Yue, Z. Sun, P. Cheng, L. Chen, S. Meng, K. Wu, B. Feng, Nat. Commun. 13, 7000 (2022), https://doi.org/10.1038/s41467-022-34043-9

L. Meng, W. Yan, Z.-D. Chu, Y. Zhang, L. Feng, R.-F. Dou, J.-C. Nie, L. He, 2012, https://arxiv.org/abs/1208.0903

L. Meng, Y. Zhang, W. Yan, L. Feng, L. He, R.-F. Dou, J.-C. Nie, Appl. Phys. Lett. 100, 091601 (2012), https://doi.org/10.1063/1.3691952

L. Meng, W. Yan, L. Yin, Z.-D. Chu, Y. Zhang, L. Feng, R. Dou, J. Nie, J. Phys. Chem. C 118, 6462 (2014), https://doi.org/10.1021/jp4109915

N. Zhu, J. Jiang, A. Zafar, J. Hong, Y. Zhang, APL Mater. 7, 041108 (2019), https://doi.org/10.1063/1.5087091

T. Salamon, B. Irsigler, D. Rakshit, M. Lewenstein, T. Grass, R. Chhajlany, Phys. Rev. B 106, 174503 (2022), https://doi.org/10.1103/PhysRevB.106.174503

D.O. Oriekhov, V.P. Gusynin, V.M. Loktev, Phys. Rev. B 103, 195104 (2021), https://doi.org/10.1103/PhysRevB.103.195104

D. Sénéchal, A.-M.S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004), https://doi.org/10.1103/PhysRevLett.92.126401

M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, G. Kotliar, Phys. Rev. Lett. 95, 106402 (2005), https://doi.org/10.1103/PhysRevLett.95.106402

W. Wu, M.S. Scheurer, M. Ferrero, A. Georges, Phys. Rev. Research 2, 033067 (2020), https://doi.org/10.1103/PhysRevResearch.2.033067

M. Zare, Supercond. Sci. Technol. 32, 115002 (2019), https://doi.org/10.1088/1361-6668/ab3caf

S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407(R) (2010), https://doi.org/10.1103/PhysRevB.81.081407

S.F. Islam, P. Dutta, A.M. Jayannavar, A. Saha, Phys. Rev. B 97, 235424 (2018), https://doi.org/10.1103/PhysRevB.97.235424

D.L. Rode, Semiconductors and Semimetals, Transport Phenomena, Vol. 10, Academic Press, New York 1975, p. 1

W.A. Harrison, Electronic Structure and the Properties of Solids, W.H. Freeman and Company, San Francisco 1980

O. Zakharov, A. Rubio, X. Blase, M.L. Cohen S.G. Louie, Phys. Rev. B 50, 10780 (1994), https://doi.org/10.1103/PhysRevB.50.10780

N. Ashcroft, N. Mermin, Solid State Physics, Saunders College, Philadelphia 1976

V. Ariel, 2012, https://arxiv.org/abs/1205.3995

B. Fornberg, Math. Comput. 51, 699 (1988), https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf

C. Sevik, J.R. Wallbank, O. Gülseren, F.M. Peeters, D. Çakír, 2D Mater. 4, 035025 (2017), https://doi.org/10.1088/2053-1583/aa80c4

W. Nothing, A. Ramakanth, Quantum Theory of Magnetism, Springer, New York 2009

H. Mousavi, J. Magn. Magn. Mater. 322, 2533 (2010), https://doi.org/10.1016/j.jmmm.2010.03.014