Investigation of Transport Properties and Dielectric Studies in La(0.9)Bi(0.1)MnO3 Manganite
Main Article Content
Abstract
Low bismuth doping in lanthanum manganite is studied in detail for its unusual electrical conductivity and dielectric properties. The direct current electrical conductivity measurements exhibit proper semiconducting (or insulating) nature without any phase transitions. The low temperature direct current electrical conduction is due to the Mott-variable range hopping mechanism in the absence of the magnetic field (H = 0 T). However, in the presence of magnetic field (H = 8 T) the direct current electrical conduction switches to the Shklovskii–Efros-variable range hopping mechanism. The high-temperature direct current electrical conduction is governed by the Greaves-variable range hopping mechanism both at H=0 T and 8 T. The dielectric properties studied as a function of temperature and frequency exhibit a multiple relaxation process, which can be attributed due to the Debye + Maxwell–Wagner relaxation mechanisms. The frequency-dependent alternating current conductivity studied under constant temperatures further correlates with polaronic hopping transport mechanisms, as observed in direct current electrical conductivity measurements.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
J.L. Garcia-Munoz, C. Frontera, M.A.G. Aranda, A. Llobet, C. Ritter, Phys. Rev. B 63, 064415 (2001), https://doi.org/10.1103/PhysRevB.63.064415
S. Hanif, M. Hassan, S. Riaz, S. Atiq, S.S. Hussain, S. Naseem, G. Murtaza, Results Phys. 7, 3190 (2017), https://doi.org/10.1016/j.rinp.2017.08.061
V. Punith Kumar, Bull. Mater. Sci. 44, 136 (2021), https://doi.org/10.1007/s12034-021-02426-1
J.X. Flores-Lasluisa, F. Huerta, D. Cazorla-Amorós, E. Morallón, Energy 247, 123456 (2022), https://doi.org/10.1016/j.energy.2022.123456
Y.D. Zhao, J. Park, R.-J. Jung, H.-J. Noh, S.-J. Oh, J. Magn. Magn. Mater. 280, 404 (2004), https://doi.org/10.1016/j.jmmm.2004.06.024
Y. Ishii, A. Ikeda, M. Tokunaga, K. Kindo, A. Matsuo, Y.H. Matsuda, J. Phys. Soc. Jpn. 92, 074702 (2023), https://doi.org/10.7566/JPSJ.92.074702
P. Wadhwa, T.J.D. Kumar, A. Shukla, R. Kumar, Solid State Commun. 358, 114976 (2022), https://doi.org/10.1016/j.ssc.2022.114976
T. Izgi, V.S. Kolat, N. Bayri, H. Gencer, S. Atalay, J. Magn. Magn. Mater. 372, 112 (2014), https://doi.org/10.1016/j.jmmm.2014.07.037
I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinsky, V.A. Khomchenko, G.N. Kakazei, J.P. Araujo, M. Tovar, V. Sikolenko, V. Efimov, A.L. Kholkin, Phys. Rev. B 83, 054109 (2011), https://doi.org/10.1103/PhysRevB.83.054109
T. Ogawa, A. Sandhu, M. Chiba, H. Takeuchi, Y. Koizumi, J. Magn. Magn. Mater. 290-291, 933 (2005), https://doi.org/10.1016/j.jmmm.2004.11.293
H. Woo, T.A. Tyson, M. Croft, S.-W. Cheong, J.C. Woicik, Phys. Rev. B 63, 134412 (2001), https://doi.org/10.1103/PhysRevB.63.134412
V. Punith Kumar, Ind. J. Phys. 96, 1393 (2022), https://doi.org/10.1007/s12648-021-02090-5
V. Punith Kumar, J. Low Temp. Phys. 218, 451 (2025), https://doi.org/10.1007/s10909-025-03269-4
Y. Endoh, K. Hirota, S. Ishihara et al., Phys. Rev. Lett. 82, 4328 (1999), https://doi.org/10.1103/PhysRevLett.82.4328 newpage
H. Hirashima, D. Arai, T. Yoshida, J. Am. Ceram. Soc. 68, 486 (1985), https://doi.org/10.1111/j.1151-2916.1985.tb15814.x
L. Murawski, C.H. Chung, J.D. Mackenzie, J. Non-Cryst. Solids 32, 91 (1979), https://doi.org/10.1016/0022-3093(79)90066-8
T.G. Castner, in: Hopping Transport in Solids, Eds. M. Pollak, B. Shklovskii, Elsevier, Amsterdam 1991, Ch. 1, p. 1, https://doi.org/10.1016/B978-0-444-88037-6.50007-5
J. Schnakenberg, Phys. Status Solidi, 28, 623 (1968), https://doi.org/10.1002/pssb.19680280220
N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., Oxford University Press, 1971
T. Holstein Ann. Phys. 8, 343 (1959), https://doi.org/10.1016/0003-4916(59)90003-X
S. Chakraborty, M. Sadhukhan, D.K. Modak, B.K. Chaudhuri, J. Mater. Sci. 30, 5139 (1995), https://doi.org/10.1007/BF00356061
R. Laiho, K.G. Lisunov, E. Lähderanta, V.S. Stamov, V.S. Zakhvalinskii, P. Colomban, P.A. Petrenko Y.P. Stepanov, J. Phys. Condens. Matter 17, 105 (2005), https://doi.org/10.1088/0953-8984/17/1/011
N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968), https://doi.org/10.1016/0022-3093(68)90002-1
N.F. Mott, E.A. Davis, K. Weiser, Phys. Today 25, 55 (1972), https://doi.org/10.1063/1.3071145
H. Sakata, K. Sega, B.K. Chaudhuri, Phys. Rev. B Condens. Matter 60, 3230 (1999), https://doi.org/10.1103/PhysRevB.60.3230
G.N. Greaves, J. Non-Cryst. Solids 11, 427 (1973), https://doi.org/10.1016/0022-3093(73)90089-6
K.C. Khao, Dielectric Phenomena in Solids, Elsevier, 2004, https://doi.org/10.1016/B978-0-12-396561-5.X5010-5
B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin 1984, https://doi.org/10.1007/978-3-662-02403-4
Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138 (2013), https://doi.org/10.1016/j.jallcom.2013.03.123
A. Arya, A.L. Sharma, J. Mater. Sci. Mater. Electron. 29, 17903 (2018), https://doi.org/10.1007/s10854-018-9905-3