N, N-Dimethylformamide Solvent-Assisted Hydrothermal Deposition for Semitransparent Sb2(S, Se)3 Solar Cells

Main Article Content

M. Yao
Y. Chen
J. An
Y. Rong
Y. Wu

Abstract

Antimony selenosulfides (Sb2(S, Se)3) has garnered significant attention due to its exceptional optoelectronic properties. The quality of the Sb2(S, Se)3 thin film is pivotal for its role as the light-absorbing layer in solar cells and directly impacts device performance. This study depicts for the first time the use of N, N-dimethylformamide as an assisting solvent in the hydrothermal deposition process for producing semitransparent solar cells based on Sb2(S, Se)3 thin films. Comparative analysis with the traditional hydrothermal deposition method using water as the sole solvent reveals a substantial reduction in surface pinholes of the Sb2(S, Se)3 thin film, thereby mitigating current leakage resulting from direct contact between the electron transport layer and electrode. X-ray diffraction characterization demonstrates enhanced crystallinity with [021] orientation in the improved Sb2(S, Se)3 thin film, facilitating improved carrier transport. Furthermore, the dark JV curve reveals that the reverse saturation current of the Sb2(S, Se)3 solar cell with the traditional hydrothermal method is 3.45 x 10-6 mA/cm2, whereas for the enhanced Sb2(S, Se)3 solar cell, it is 4.65 x 10-7 mA/cm2, indicating reduced carrier trapping by defects. These findings reveal that the fill factor of devices obtained through solvent-assisted hydrothermal deposition method with N, N-dimethylformamide as an assisting solvent increased from 35.06% to 40.96% and achieved the power conversion efficiency of 3.23%, representing a 50% improvement of the power conversion efficiency over those obtained through traditional hydrothermal deposition without any assisting solvent. The average visible light transmittance was about 9.17%. 

Article Details

How to Cite
[1]
M. Yao, Y. Chen, J. An, Y. Rong, and Y. Wu, “N, N-Dimethylformamide Solvent-Assisted Hydrothermal Deposition for Semitransparent Sb2(S, Se)3 Solar Cells”, Acta Phys. Pol. A, vol. 147, no. 1, p. 38, Feb. 2025, doi: 10.12693/APhysPolA.147.38.
Section
Regular segment

References

R. Zhou, Z. Yang, J.Z. Xu, G.Z. Cao, Coord. Chem. Rev. 374, 279 (2018)

K. Lee, H.D. Um, D. Choi, J. Park, N. Kim, H. Kim, K. Seo, Cell Rep. Phys. Sci. 1, 24 (2020)

M. Ishaq, H. Deng, S. J. Yuan, H. Zhang, J. Khan, U. Farooq, H.S. Song, J. Tang, Sol. RRL 2, 9 (2018)

P. Kumar, M. Eriksson, D.S. Kharytonau, S.J. You, M.M. Natile, A. Vomiero, ACS Appl. Energ. Mater. 7, 1421 (2024)

Y. Zhou, M.Y. Leng, Z. Xia et al., Adv. Energy Mater. 4, 8 (2014)

Y. Zhou, L. Wang, S.Y. Chen et al., Nat. Photon. 9, 409 (2015)

R. Kondrotas, C. Chen, J. Tang, Joule 2, 857 (2018)

Z.Q. Li, X.Y. Liang, G. Li et al., Nat. Commun. 10, 9 (2019)

R.F. Tang, X.M. Wang, W.T. Lian et al., Nat. Energy 5, 587 (2020)

W. Liu, H.T. Li, B. Qiao, S.L. Zhao, Z. Xu, D.D. Song, Sol. Energy 233, 337 (2022)

S.Y. Kuo, M.Y. Hsieh, D.H. Hsieh, H.C. Kuo, C.H. Chen, F.I. Lai, Int. J. Photoenergy 2014, 6 (2014)

J.B. Gong, Y.F. Kong, J.M. Li, K.F. Wang, X.Q. Wang, Z.M. Zhang, Z.J. Ding, X.D. Xiao, Nano Energy 62, 205 (2019)

P. Kumar, S.J. You, A. Vomiero, J. Mater. Chem. C 10, 16273 (2022)

Y.Q. Huang, H.H. Gao, X.Q. Peng, G. Wang, P. Xiao, B. Che, R.F. Tang, C.F. Zhu, T. Chen, Sol. RRL 7, 8 (2023)

X.L. Chen, B. Che, Y.Q. Zhao et al., Adv. Energy Mater. 13, 10 (2023)

R.F. Tang, X.M. Wang, C.H. Jiang, S. Li, W.F. Liu, H.X. Ju, S.F. Yang, C.F. Zhu, T. Chen, ACS Appl. Mater. Interfaces 10, 30314 (2018)

J. Han, X.Y. Pu, H. Zhou et al., ACS Appl. Mater. Interfaces 12, 44297 (2020)

C.H. Jiang, R.F. Tang, X.M. Wang, H.X. Ju, G.L. Chen, T. Chen, Sol. RRL 3, 8 (2019)

J. Han, S.J. Wang, J.B. Yang, S.H. Guo, Q. Cao, H.J. Tang, X.Y. Pu, B.Y. Gao, X.H. Li, ACS Appl. Mater. Interfaces 12, 4970 (2020)

S.J. Lee, S.J. Sung, K.J. Yang, J.K. Kang, J.Y. Kim, Y.S. Do, D.H. Kim, ACS Appl. Energ. Mater. 3, 12644 (2020)

J.W. Zhang, W.T. Lian, Y.W. Yin, X.M. Wang, R.F. Tang, C. Qian, X.J. Hao, C.F. Zhu, T. Chen, Sol. RRL 4, 6 (2020)

Z. Yang, W.H. Zhang, Chin. J. Catal. 35, 983 (2014)

M.A. Green, E.D. Dunlop, M. Yoshita et al. Prog. Photovolt. 32, 425 (2024)

Y. Mao, L. Huang, W.G. Zeng, F.Y. Wu, L.Q. Yao, L.M. Lin, J.M. Zhang, J.M. Li, G.L. Chen, Chem. Eng. J. 446, 10 (2022)

Y.L. Pan, X.B. Hu, Y.X. Guo et al., Adv. Funct. Mater. 31, 9 (2021)

J.M. Li, Y.Q. Zhao, C. Li, S.Y. Wang, X.L. Chen, J.B. Gong, X.M. Wang, X.D. Xiao, Adv. Sci. 9, 10 (2022)

M. Azam, Y.D. Luo, R. Tang et al., ASC Appl. Mater. Interfaces 14, 4276 (2022)

Y.Q. Zhao, S.Y. Wang, C. Li et al., Energy Environ. Sci. 15, 5118 (2022)

W.L. Shao, H.B. Wang, F.H. Ye et al., Energy Environ. Sci. 16, 252 (2023)

C.H. Jiang, R.F. Tang, X.M. Wang, H.X. Ju, G.L. Chen, T. Chen, Sol. RRL 3, 8 (2019)

X. Jin, Y.A. Fang, T. Salim, M.J. Feng, S. Hadke, S.W. Leow, T.C. Sum, L.H. Wong, Adv. Funct. Mater. 30, 11 (2020)

C. Liu, Z.X. Pan, K. Shen et al., J. Energy Chem. 68, 521 (2022)

X.L. Mao, M.R. Bian, C.X. Wang et al., ACS Appl. Energ. Mater. 5, 3022 (2022)