Old Questions and New Results — Recent Advances in Superconductivity

Main Article Content

A. Wittlin

Abstract

The mechanism of high-temperature superconductivity remains a subject of research, although there is a fairly widespread view that it is not the classical Bardeen–Cooper–Schrieffer mechanism. One of the most  active  critics  of  the Bardeen–Cooper–Schrieffer theory is J. Hirsch, who also presents his hole superconductivity model as a theory that better describes this phenomenon. We review the current state and prospects of experimental confirmation of the hole theory of superconductivity and discuss the results of contemporary experimental and theoretical works related to issues identified as significant tests of the credibility of this theory.

Article Details

How to Cite
[1]
A. Wittlin, “Old Questions and New Results — Recent Advances in Superconductivity”, Acta Phys. Pol. A, vol. 147, no. 5, p. 370, May 2025, doi: 10.12693/APhysPolA.147.370.
Section
Regular segment

References

J. Bardeen, L.N. Cooper, J.R. Schieffer, Phys. Rev. 108}, 1175 (1957), https://doi.org/10.1103/PhysRev.108.1175

R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics, Vol. III: Quantum Mechanics, Addison-Wesley Publishing Company, Reading (MA) 1965

P.G. de Gennes, Superconductivity of Metals and Alloys, Benjamin 1966

M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, New York 1996, Ch. 3

G.D. Mahan, Many-Particle Physics, 3rd ed. Kluwer Academic/Plenum Publishers, New York 2000, Ch. 10, https://doi.org/10.1007/978-1-4757-5714-9

S. Weinberg, The Quantum Theory of Fields, Vol. II, Cambridge University Press, Cambridge 1966, Ch. 21.6

C. Hainzl, R. Seiringer, J. Math. Phys. 57, 021101 (2016), https://doi.org/10.1063/1.4941723

P.W. Anderson, Science 235, 1196 (1987), https://doi.org/10.1126/science.235.4793.1196

V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987), https://doi.org/10.1103/PhysRevLett.58.2794

J.R. Schrieffer, X.-G. Wen, S.-C. Zhang, Phys. Rev. Lett. 60, 944 (1988), https://doi.org/10.1103/PhysRevLett.60.944

C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989), https://doi.org/10.1103/PhysRevLett.63.1996}; Erratum: Phys. Rev. Lett. 64, 497 (1990), https://doi.org/10.1103/PhysRevLett.64.497

J.E. Hirsch, Phys. Lett. A 134, 451 (1989), https://doi.org/10.1016/0375-9601(89)90370-8

J.E. Hirsch, Phys. Rev. B 62, 14487 (2000), https://doi.org/10.1103/PhysRevB.62.14487

J.E. Hirsch, Phys. Rev. B 62, 14498 (2000), https://doi.org/10.1103/PhysRevB.62.14498

J.E. Hirsch, Phys. Rev. B 65, 184502 (2002), https://doi.org/10.1103/PhysRevB.65.184502

J.E. Hirsch, Phys. Rev. B 68, 012510 (2003), https://doi.org/10.1103/PhysRevB.68.012510

J.E. Hirsch, Phys. Rev. B 71, 104522 (2005), https://doi.org/10.1103/PhysRevB.71.104522

J.E. Hirsch, Int. J. Mod. Phys. B 23, 3035 (2009), https://doi.org/10.1142/S0217979210055834

J.E. Hirsch, Int. J. Mod. Phys. B 24, 3627 (2010), https://doi.org/10.1142/S0217979210055834

J.E. Hirsch, Phys. Rev. B 87, 184506 (2013), https://doi.org/10.1103/PhysRevB.87.184506

J.E. Hirsch, Superconductivity Begins With H: Both Properly Understood, and Misunderstood: Superconductivity Basics Rethought, World Scientific, Singapore 2020, https://doi.org.10.1142/11734

J.E. Hirsch, Hole Superconductivity (Lecture Notes of the Autumn School on Correlated Electrons 2024, Correlations and Phase Transitions, Chpt. 7, edited by E. Pavarini, E. Koc), 2024 (preprint), https://doi.org.10.31219/osf.io/kpxuf

J.E. Hirsch, Phys. Scr. 80, 035702 (2009), https://doi.org/10.1088/0031-8949/80/03/035702

J.E. Hirsch, Complete list of articles (available Apr. 2025), https://jorge.physics.ucsd.edu/jh.html

N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968), https://doi.org/10.1103/PhysRevLett.21.1748

N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004), https://doi.org/10.1103/PhysRevLett.92.187002

E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Nature 586, 373 (2020), https://doi.org/10.1038/s41586-020-2801-z

D. van der Marel, J.E. Hirsch, Int. J. Mod. Phys. B 37, 2375001 (2023), https://doi.org/10.1142/S0217979223750012

J. Hirsch, Natl. Sci. Rev. 11, nwad174 (2024), https://doi.org/10.1093/nsr/nwad174

J.E. Hirsch, J. Supercond. Nov. Magn. 37, 1783 (2024), https://doi.org/10.1007/s10948-024-06834-2

F. Capitani, B. Langerome, J.-B. Brubach, P. Roy, A. Drozdov, M.I. Eremets, E.J. Nicol, J.P. Carbotte, T. Timusk, Nat. Phys. 13, 859 (2017), https://doi.org/10.1038/nphys4156

J.E. Hirsch, F. Marsiglio, Nat. Phys. 18, 1033 (2022), https://doi.org/10.1038/s41567-022-01693-x

P. Roy, J.-B. Brubach, F. Capitani, B. Langerome, A. Drozdov, M.I. Eremets, E.J. Nicol, T. Timusk, Nat. Phys. 18, 1036 (2022), https://doi.org/10.1038/s41567-022-01694-w

G.S. Boebinger, A.V. Chubukov, I.R. Fisher et al., Nat. Rev. Phys. 7, 2 (2025), https://doi.org/10.1038/s42254-024-00794-1

J.E. Hirsch, Physica C 199, 305 (1992), https://doi.org/10.1016/0921-4534(92)90415-9

J. Hirsch, F. Marsiglio, Phys. Rev. B 62, 15131 (2000), https://doi.org/10.1103/PhysRevB.62.15131

F. Reiche, W. Thomas, Naturwissenschaften 13, 627 (1925) (in German), https://doi.org/10.1007/bf01558908

W. Kuhn, Z. Phys. 33, 408 (1925) (in German), https://doi.org/10.1007/bf01328322

W. Kohn, Phys. Rev. 133, A171 (1964), https://doi.org/10.1103/PhysRev.133.A171

R. Resta, J. Phys. Condens. Matter 30, 414001 (2018), https://doi.org/10.1088/1361-648X/aade19

M. Dressler, G. Gruener, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, Cambridge 2002

D.C. Mattis, J. Bardeen, Phys. Rev. 111, 412 (1958), https://doi.org/10.1103/PhysRev.111.412

W. Zimmermann, E.H. Brandt, M. Bauer, E. Seider, L. Genzel, Physica C 183, 99 (1991), https://doi.org/10.1016/0921-4534(91)90771-P

R.E. Glover, M. Tinkham, Phys. Rev. 108, 243 (1957), https://doi.org/10.1103/PhysRev.108.243

M. Tinkham, R.A. Ferrell, Phys. Rev. Lett. 2, 331 (1959), https://doi.org/10.1103/PhysRevLett.2.331

C.C. Homes, S.V. Dordevic, D.A. Boon, R. Liang, W.N. Hardy, Phys. Rev. B 69, 024514 (2004), https://doi.org/10.1103/PhysRevB.69.024514

A.V. Boris, N.N. Kovaleva, O.V. Dolgov, T. Holden, C.T. Lin, B. Keimer, C. Bernhard, Science 304, 708 (2004), https://doi.org/10.1126/science.1095532

H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, M. Li, Science 295, 2239 (2002), https://doi.org/10.1126/science.1069947

A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z.Z. Li, H. Raffy, Europhys. Lett. 62, 568 (2003), https://doi.org/10.1209/epl/i2003-00388-9

F. Carbone, A.B. Kuzmenko, H.J.A. Molegraaf, E. van Heumen, E. Giannini, D. van der Marel, Phys. Rev. B 74, 024502 (2006), https://doi.org/10.1103/PhysRevB.74.024502

A.F. Santander-Syro, R.P.S.M. Lobo, N. Bontemps, W. Lopera, D. Giratá, Z. Konstantinovic, Z.Z. Li, H. Raffy, Phys. Rev. B 70, 134504 (2004), https://doi.org/10.1103/PhysRevB.70.134504

A.B. Kuzmienko, H.J.A. Molegraaf, F. Carbone, D. van der Marel, Phys. Rev. B 72, 144503 (2005), https://doi.org/10.1103/PhysRevB.72.144503

D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2005), https://doi.org/10.1103/RevModPhys.77.721

R.D. Dawson, X. Shi, K.S. Rabinovich, D. Putzky, Y.-L. Mathis, G. Christiani, G. Logvenov, B. Keimer, A.V. Boris, Phys. Rev. B 108, 104501 (2023), https://doi.org/10.1103/PhysRevB.108.104501

J.E. Hirsch, Phys. Rev. B 69, 214515 (2004), https://doi.org/10.1103/PhysRevB.69.214515

F. London, H. London, Proc. R. Soc. Lond. A 149, 71 (1935), https://doi.org/10.1098/rspa.1935.0048

F. London, H. London, Physica 2, 341 (1935) (in German), https://doi.org/10.1016/S0031-8914(35)90097-0

W. Meißner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933) (in German), https://doi.org/10.1007/BF01504252

H. London, Proc. R. Soc. Lond. A 155, 102 (1935), https://doi.org/10.1098/rspa.1936.0086

J.E. Hirsch, Physica C 508, 21 (2015), https://doi.org/10.1016/j.physc.2014.10.018

A. Peronio, F.J. Giessibl, Phys. Rev. B 94, 094503 (2016), https://doi.org/10.1103/PhysRevB.94.094503

J.E. Hirsch, Physica C 478, 42 (2012), https://doi.org/10.1016/j.physc.2012.03.049

M. Hamidian, S. Edkins, S. Joo et al., Nature 532, 343 (2016), https://doi.org/10.1038/nature17411

Z. Du, H. Li, S.H. Joo, E.P. Donoway, J. Lee, J.C.S. Davis, G. Gu, P.D. Johnson, K. Fujita, Nature 580, 65 (2020), https://doi.org/10.1038/s41586-020-2143-x

S.M. O'Mahony, W. Ren, W. Chen, Y.X. Chong, X. Liu, H. Eisaki, S. Uchida, M.H. Hamidian, J.C.S. Davis, Proc. Natl. Acad. Sci. U.S.A. 119, e2207449119 (2022), https://doi.org/10.1073/pnas.2207449119

A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems, McGraw-Hill, New York 1971

J.E. Hirsch, Int. J. Mod. Phys. B 34, 2050175 (2020), https://doi.org/10.1142/S0217979220501751

J.E. Hirsch, Phys. Rev. B 95, 014503 (2017), https://doi.org/10.1103/PhysRevB.95.014503

J.E. Hirsch, Acta Phys. Pol. A 133, 350 (2018), https://doi.org/10.12693/APhysPolA.133.350

J.E. Hirsch, List of articles discussing the Meissner effect (available Apr. 2025), https://jorge.physics.ucsd.edu/meissner.html

W.H. Cherry, J.I. Gittleman, Solid-State Electron. 1, 287 (1960), https://doi.org/10.1016/0038-1101(60)90071-X

A. Schilling, https://arxiv.org/abs/2407.08677, 2024