Temperature Dependence of the Occupancy of Landau Subbands in a Two-Dimensional Electron Gas

Main Article Content

B.T. Abdulazizov
P.J. Baymatov
A.A. Saydaliev
O.M. Yunusov
K.N. Juraev

Abstract

Numerical modeling has been used to study the temperature dependence of the chemical potential and the occupation of the Landau subbands in a two-dimensional electron gas. Calculations were performed for various values of the filling factor ν, taking into account the level broadening due to scattering events. Graphs depicting the temperature dependence of the electron concentration within the Landau subbands were constructed. These dependencies enable the analysis of the thermal excitations of electrons between subbands. Additionally, a simple model was used to identify the thermal excitations of electrons within a single subband.

Article Details

How to Cite
[1]
B. Abdulazizov, P. Baymatov, A. Saydaliev, O. Yunusov, and K. Juraev, “Temperature Dependence of the Occupancy of Landau Subbands in a Two-Dimensional Electron Gas”, Acta Phys. Pol. A, vol. 147, no. 4, p. 352, May 2025, doi: 10.12693/APhysPolA.147.352.
Section
Regular segment

References

T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982), https://doi.org/10.1103/RevModPhys.54.437

L.L. Chang, K Ploog, Molecular Beam Epitaxy and Heterostructures, Springer, Dordrecht 1985, https://doi.org/10.1007/978-94-009-5073-3

M. Grundmann, The Physics of Semiconductors, Springer, Berlin 2006, https://doi.org/10.1007/3-540-34661-9

E. Gornik, R. Lassnig, G. Strasser, H.L. Stormer, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985), https://doi.org/10.1103/PhysRevLett.54.1820

Z.Z. Alisultanov, R.P. Meilanov, L.S. Paixão, M.S. Reis, Physica E 65, 44 (2015), https://doi.org/10.1016/j.physe.2014.08.012

E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani, Phys. Rev. B 50, 8523 (1994), https://doi.org/10.1103/PhysRevB.50.8523

R.M. Kusters, Ph.D. Thesis, Katholieke Universiteit Nijmegen, 1990, https://repository.ubn.ru.nl/handle/2066/113848

M.R. Schaapman, U. Zeitler, P.C.M. Christianen, J.C. Maan, Phys. Rev. B 68, 193308 (2003), https://doi.org/10.1103/PhysRevB.68.193308

A. Usher, M. Elliott, J. Phys. Condens. Matter 21, 103202 (2009), https://doi.org/10.1088/0953-8984/21/10/103202

V.A. Margulis, V.A. Mironov, J. Exp. Theor. Phys. 108, 656 (2009), https://doi.org/10.1134/S106377610904013X

M. Acharyya, Commun. Theor. Phys. 55, 901 (2011), https://doi.org/10.1088/0253-6102/55/5/30

A.C.A. Ramos, G.A. Farias, N.S. Almeida, Phys. E Low-Dimen. Syst. Nanostruct. 43, 1878 (2011), https://doi.org/10.1016/j.physe.2011.06.030

W. Zawadzki, R. Lassnig, Surf. Sci. 142, 225 (1984), https://doi.org/10.1016/0039-6028(84)90312-1

A.H. MacDonald, H.C.A. Oji, K.L. Liu, Phys. Rev. B 34, 2681 (1986), https://doi.org/10.1103/PhysRevB.34.2681

Q. Li, X.C. Xie, S. Das Sarma, Phys. Rev. B 40, 1381 (1989), https://doi.org/10.1103/PhysRevB.42.7132

T. Chakraborty, P. Pietilainen, Phys. Rev. B 55, 1954 (1997), https://doi.org/10.1103/PhysRevB.55.R1954

R.P. Gammag, C. Villagonzalo, Solid State Commun. 146, 487 (2008), https://doi.org/10.1016/j.ssc.2008.03.042

C. Villagonzalo, R. Gammag, J. Low Temp. Phys. 163, 43 (2011), https://doi.org/10.1007/s10909-010-0259-3

I. Fezai, S. Jaziri, Superlattices Microstruct. 59, 60 (2013), https://doi.org/10.1016/j.spmi.2013.03.019

F. Alresheedi, Results Phys. 54, 107042 (2023), https://doi.org/10.1016/j.rinp.2023.107042

B.T. Abdulazizov, G. Gulyamov, P.J. Baymatov, S.T. Inoyatov, M.S. Tokhirjonov, K.N. Juraev, SPIN 12, 2250002 (2022), https://doi.org/10.1142/S2010324722500023