Stability and Population Oscillations in a Spin–Orbit Coupled Bose–Einstein Condensate

Main Article Content

Q. Zhu
C. Kong

Abstract

In this paper, we have investigated the stability and population oscillations in a spin–orbit coupled Bose–Einstein condensate. For the time-independent system parameters, the stability of the steady-state solutions was analyzed with the linear stability theorem. For the asymmetric case, we demonstrated that a larger relative energy can enhance macroscopic quantum self-trapping. A larger relative energy or a stronger population transfer strength can assist or suppress the tunneling rate, depending on the initial population. Finally, the chaotic parameter regions and the chaotic atomic tunneling between two periodically driven Bose–Einstein condensates have been investigated. The results reveal that chaos can notably enhance the tunneling rate. The results could be significant in the quantum transport of the spin–orbit coupled cold-atom system.

Article Details

How to Cite
[1]
Q. Zhu and C. Kong, “Stability and Population Oscillations in a Spin–Orbit Coupled Bose–Einstein Condensate”, Acta Phys. Pol. A, vol. 147, no. 4, p. 309, Apr. 2025, doi: 10.12693/APhysPolA.147.309.
Section
Regular segment

References

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995), https://doi.org/10.1126/science.269.5221.198

C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995), https://doi.org/10.1103/PhysRevLett.75.1687

Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004), https://doi.org/10.1126/science.11055

M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007), https://doi.org/10.1126/science.1148047

B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006), https://doi.org/10.1126/science.1133734

L.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011), https://doi.org/10.1038/nature09887

Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012), https://doi.org/10.1103/PhysRevLett.108.225301

X. Zhou, J. Zhou, C. Wu, Phys. Rev. A 84, 063624 (2011), https://doi.org/10.1103/PhysRevA.84.063624

Y.V. Kartashov, V.V. Konotop, D.A. Zezyulin, L. Torner, Phys. Rev. Lett. 117, 215301 (2016), https://doi.org/10.1103/PhysRevLett.117.215301

K. Mæland, A.T.G. Janssønn, J.H. Rygh, A. Sudbø, Phys. Rev. A 102, 053318 (2020), https://doi.org/10.1103/PhysRevA.102.053318

G. Huang, G. Luo, Z. Wu, Z. Xu, Phys. Rev. A 103, 043328 (2021), https://doi.org/10.1103/PhysRevA.103.043328

X. Luo, Z.Y. Zeng, Y. Guo, B. Yang, J. Xiao, L. Li, C. Kong, A.X. Chen, Phys. Rev. A 103, 043315 (2021), https://doi.org/10.1103/PhysRevA.103.043315

Y. Luo, X. Wang, L. Luo, Z. Zhou, Z.Y. Zeng, X. Luo, New J. Phys. 22, 093041 (2020), https://doi.org/10.1088/1367-2630/abb03f

H. Deng, T. Wan, Y. He et al., Results Phys. 31, 104926 (2021), https://doi.org/10.1016/j.rinp.2021.104926

Q.B. Wang, J.G. Hu, X.H. Su, L.H. Wen, Results Phys. 20, 103755 (2021), https://doi.org/10.1016/j.rinp.2020.103755

M.N. Chen, B.J. Liao, H.C. Wang, H. Huang, Y. Liu, D.X. Ling, Results Phys. 18, 103304 (2020), https://doi.org/10.1016/j.rinp.2020.103304

X.F. Zhang, Y.F. Liu, H.B. Luo, B. Liu, F.Q. Dou, Y. Li, B.A. Malomed, Phys. Rev. A 110, 063302 (2024), https://doi.org/10.1103/PhysRevA.110.063302

A. Saboo, S. Halder, S. Das, S. Majumder, Phys. Rev. A 110, 033325 (2024), https://doi.org/10.1103/PhysRevA.110.033325

M. Lepers, V. Zehnlé, J.C. Garreau, Phys. Rev. Lett. 101, 144103 (2008), https://doi.org/10.1103/PhysRevLett.101.144103

J. Martin, B. Georgeot, Phys. Rev. Lett. 101, 074102 (2008), https://doi.org/10.1103/PhysRevLett.101.074102

R.A. Kidd, M.K. Olsen, J.F. Corney, Phys. Rev. A 100, 013625 (2019), https://doi.org/10.1103/PhysRevA.100.013625

R. Wanzenböck, S. Donsa, H. Hofstätter, O. Koch, P. Schlagheck, I. Březinová, Phys. Rev. A 103, 023336 (2021), https://doi.org/10.1103/PhysRevA.103.023336

S.C. Li, L. Pezzé, A. Smerzi, Phys. Rev. A 103, 052417 (2021), https://doi.org/10.1103/PhysRevA.103.052417

W.C. Syu, D.S. Lee, C.Y. Lin, Phys. Rev. A 101, 063622 (2020), https://doi.org/10.1103/PhysRevA.101.063622

C. Lee, W. Hai, L. Shi, X. Zhu, K. Gao, Phys. Rev. A 64, 053604 (2001), https://doi.org/10.1103/PhysRevA.64.053604

R. Bürkle, A. Vardi, D. Cohen, J.R. Anglin, Phys. Rev. Lett. 123, 114101 (2019), https://doi.org/10.1103/PhysRevLett.123.114101

A. Dey, D. Cohen, A. Vardi, Phys. Rev. A 99, 033623 (2019), https://doi.org/10.1103/PhysRevA.99.033623

S. Rong, W. Hai, Q. Xie, Q. Zhu, Chaos 19, 033129 (2009), https://doi.org/10.1063/1.3216764

Z. Zhou, W. Hai, Y. Deng, Q. Xie, Chaos Solit. Fract. 45, 1423 (2012), https://doi.org/10.1016/j.chaos.2012.07.007

C.J. Liu, Y.C. Meng, J.L. Qin, L. Zhou, Results Phys. 43, 106091 (2022), https://doi.org/10.1016/j.rinp.2022.106091

J. Larson, B.M. Anderson, A. Altland, Phys. Rev. A 87, 013624 (2013), https://doi.org/10.1103/PhysRevA.87.013624

C. Kong, H. Chen, C. Li, W. Hai, Chaos 28, 023115 (2018), https://doi.org/10.1063/1.5009534

C. Kong, X. Luo, H. Chen, Y. Luo, W. Hai, Chaos 29, 103148 (2019), https://doi.org/10.1063/1.5118873

F.Q. Hu, J.J. Wang, Z.F. Yu, A.X. Zhang, J.K. Xue, Phys. Rev. E 93, 022214 (2016), https://doi.org/10.1103/PhysRevE.93.022214

L. Salasnich, B.A. Malomed, Phys. Rev. A 87, 063625 (2013), https://doi.org/10.1103/PhysRevA.87.063625

Y.S. Cheng, G.H. Tang, S.K. Adhikari, Phys. Rev. A 89, 063602 (2014), https://doi.org/10.1103/PhysRevA.89.063602

A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997), https://doi.org/10.1103/PhysRevLett.79.4950

W. Hai, C. Lee, G. Chong, L. Shi, Phys. Rev. E 66, 026202 (2002), https://doi.org/10.1103/PhysRevE.66.026202

X. Luo, W. Hai, Chaos 15, 033702 (2005), https://doi.org/10.1063/1.1940527

G. Chong, W. Hai, Q. Xie, Chaos 14, 217 (2004), https://doi.org/10.1063/1.1648243

G. Chong, W. Hai, Q. Xie, Phys. Rev. E 71, 016202 (2005), https://doi.org/10.1103/PhysRevE.71.016202

W. Hai, S. Rong, Q. Zhu, Phys. Rev. E 78, 066214 (2008), https://doi.org/10.1103/PhysRevE.78.066214

V.K. Melnikov, Trans. Moscow Math. Soc. 12, 1 (1963)]

C. Kong, Y. He, T. Wan, B. Yin, R. Liu, Y. Chen, J. Huang, D. Lei, C. Jiang, H. Deng, Phys. Lett. A 458, 128597 (2023), https://doi.org/10.1016/j.physleta.2022.128597

H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, T. Pfau, Nature 530, 194 (2016), https://doi.org/10.1038/nature16525

I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Phys. Rev. Lett. 116, 215301 (2016), https://doi.org/10.1103/PhysRevLett.116.215301

B.A. Malomed, Front. Phys. 16, 22504 (2021), https://doi.org/10.1007/s11467-020-0999-8

Z. Luo, W. Pang, B. Liu, Y. Li, B.A. Malomed, Front. Phys. 16, 32201 (2021), https://doi.org/10.1007/s11467-021-1047-z

X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B.A. Malomed, Y. Li, Phys. Rev. Lett. 123, 133901 (2019), https://doi.org/10.1103/PhysRevLett.123.133901

Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, B.A. Malomed, New J. Phys. 19, 113043 (2017), https://doi.org/10.1088/1367-2630/aa983b