Studies of the Physical Properties of Sputter-Deposited ZnO, ZnO/Pt and ZnO/Pd Semiconductor Thin Films for Sensor Application
Main Article Content
Abstract
An investigation into the physical properties of the wide band gap oxide semiconductor material zinc oxide for sensors has been conducted. The investigation presented in this paper is divided into two sections. The first section focuses on the development of the deposition technology, investigation of physical properties (such as surface topography, crystalline structure, spectral transmission in the ultraviolet–visible–near infrared range, and the chemical composition) of the ZnO, ZnO/Pt, or ZnO/Pd layer. The other section focuses on the sensor's properties (changes in spectral transmission) of ZnO layers as a function of temperature or a selected gas environment (hydrogen). These investigations were carried out on the following structures: pure ZnO layer with a relatively low roughness surface, pure and porous ZnO layer, and porous ZnO layer doped with palladium or platinum. The results are a basis for the development of optoelectronic sensors, which serve the purpose of detecting hydrogen or temperature measurements.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
P. Kokayeff, S. Zink, P. Roxas, in: Handbook of Petroleum Processing, Eds. S.A. Treese, D.S. Jones, P.R. Pujado, Springer, 2020 p. 1, https://doi.org/10.1007/978-3-319-05545-9
Y. Haseli, Int. J. Hydrogen Energy 43, 9015 (2018), https://doi.org/10.1016/j.ijhydene.2018.03.076a
R. Ramachandran, R. Menon, Int. J. Hydrogen Energy 23, 593 (1998), https://doi.org/10.1016/S0360-3199(97)00112-2
M.A. Borysiewicz, Crystals 9, 505 (2019), https://doi.org/10.3390/cryst9100505
Y. Wang, Y. Wang, X. Sun, M. Li, M. Tang, J. Cao, C. Qin, Int. J. Hydrogen Energy 50, 1470 (2024), https://doi.org/10.1016/j.ijhydene.2023.11.130
I. Cheng, C. Lin, F. Pan, Appl. Surf. Sci. 541, 148551 (2021), https://doi.org/10.1016/j.apsusc.2020.148551
M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, Sens. Actuators Rep. 4, 100100 (2022), https://doi.org/10.1016/j.snr.2022.100100
V. Schröder, B. Emonts, H. Janßen, H.-P. Schulze, Chem. Eng. Technol. 27, 847 (2004), https://doi.org/10.1002/ceat.200403174
R. Jaaniso, O.K. Tan, Semiconductor Gas Sensors, 1st ed., Elsevier, 2013
P. Struk, T. Pustelny, K. Gołaszewska, M.A. Borysiewicz, A. Piotrowska, Bull. Pol. Acad. Sci. 63, 829 (2015), https://doi.org/10.1515/bpasts-2015-0094
C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Processing, Properties, and Applications, 1st ed., Elsevier, Berlin 2006
S.K. Shaikh, V.V. Ganbavale, S.V. Mohite, U.M. Patil, K.Y. Rajpure, Superlattices Microstruct. 120, 170 (2018), https://doi.org/10.1016/j.spmi.2018.05.021
G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices, CRC Press, 2011
P. Listewnik, M. Hirsch, P. Struk, M. Weber, M. Bechelany, M. Jędrzejewska-Szczerska, Nanomaterials 9, 306 (2019), https://doi.org/10.3390/nano9020306
P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M.A., Borysiewicz, M. Ekielski, A. Piotrowska, Opto-Electron. Rev. 21, 376 (2013), https://doi.org/10.2478/s11772-013-0102-x
H. Morkoç, U. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, https://doi.org/10.1002/9783527623945, Wiley, 2009
S. Kumar, S.D. Lawaniya, S. Agarwal, Y.-T. Yu, S.R. Nelamarri, M. Kumar, Y.M. Mishra, K. Awasthi, Sens. Actuators B Chem. 375, 132943 (2023), https://doi.org/10.1016/j.snb.2022.132943
Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Solid State Ion. 360, 115544 (2021), https://doi.org/10.1016/j.ssi.2020.115544
M.A. Borysiewicz, E. Dynowska, V. Kolkovsky, J. Dyczewski, M. Wielgus, E. Kamińska, A. Piotrowska, Phys. Status Solidi (a) 209, 2463 (2012), https://doi.org/10.1002/pssa.201228041
C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, https://doi.org/10.1007/978-3-642-10577-7, Springer, 2010,
R. Joswik, A.A. Dalinkevich, Chemistry and Chemical Biology: Methodologies and Applications, 1st ed., Apple Academic Press, 2014
R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007), https://doi.org/10.1103/PhysRevB.75.165202
A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, A.A. Materny, Vib. Spectrosc. 72, 90 (2014), https://doi.org/10.1016/j.vibspec.2014.02.013
B. Hadžić, N. Romčević, J. Trajić, R. Kostić, G. Stanišić, D. Timotijević, in: Proc. of the III Advanced Ceramics and Applications Conf., Eds. W. Lee, R. Gadow, V. Mitic, N. Obradovic, Atlantis Press, Paris 2016
S. Guo, Z. Du, S. Dai, Phys. Status Solidi (b) 246, 2329 (2009), https://doi.org/10.1002/pssb.200945192
P. Cai, D. Zhen, X. Xu, Y. Liu, N. Chen, G. Wei, C. Sui, Mater. Sci. Eng. B 171, 116 (2010), https://doi.org/10.1016/j.mseb.2010.03.083
M. Wang, E.J. Kim, J.S. Chung, E.W. Shin, S.H., Hahn, K.E. Lee, C. Park, Phys. Status Solidi (a) 203, 2418 (2006), https://doi.org/10.1002/pssa.200521398
Q.A. Drmosh, Z.H. Yamani, Ceram. Int. 42, 12378 (2016), https://doi.org/10.1016/j.ceramint.2016.05.011
A.-T.T. Do, H.T. Giang, T.T. Do, N.Q. Pham, G.T. Ho, Beilstein J. Nanotechnol. 5, 1261 (2014), https://doi.org/10.3762/bjnano.5.140
A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009), https://doi.org/10.1088/0034-4885/72/12/126501
N.H. Al-Hardan, M.J. Abdullah, A.A. Aziz, Int. J. Hydrogen Energy 35(9), 4428 (2010), https://doi.org/10.1016/j.ijhydene.2010.02.006
Y.P. Varshni, Physica 34, 149 (1967), https://doi.org/10.1016/0031-8914(67)90062-6
K.J. Hong, T.S. Jeong, J. Cryst. Growth 280, 545 (2005), https://doi.org/10.1016/j.jcrysgro.2005.04.009
C. Sui, J. Xia, H. Wang, T. Xu, B. Yan, Y. Liu, Rev. Sci. Instrum. 82, 084901 (2011), https://doi.org/10.1063/1.3616361
Y. Cho, A. Yamaguchi, R. Uehara, S. Yasuhara, T. Hoshina, M. Miyauchi, J. Chem. Phys. 152(23), 231101 (2020), https://doi.org/10.1063/5.0012330