Basic Diagnostics of Electrical and Structural Properties of Solar Cells

Main Article Content

M. Musztyfaga-Staszuk

Abstract

In a single batch of base material for Si wafers from a single manufacturer, there are no two wafers with absolutely identical physical and material parameters. The production of a series of cells based on them in a specific technological process introduces further differences in the distribution of parameters. This results in variability of measured performance parameters of solar cells, which generally takes the form of a Gaussian distribution. A solar cell based on crystalline silicon features a large front surface area; for example, for a standard 6-inch single element produced in the photovoltaic industry, it amounts to 236 cm2. During the technological process, the cell surface undergoes texturing, which increases its size by approximately 1.7 times in the case of a classic texture consisting of randomly distributed pyramids. Achieving a cell with high efficiency is determined by an internal quantum efficiency above 90%, which in turn requires that the doping concentration in the surface-near region cannot exceed 1.4 x 1020 atoms/cm3. On the other hand, when using metallic contacts for the front electrode of the cell applied via screen printing with Ag paste, the doping concentration in the surface-near region cannot be lower than 1020 atoms/cm3 to ensure a contact resistivity value at the level of a few  mΩ · cm2. Operations carried out in the solar cell manufacturing technology, such as crystallization, doping of the base material, and particularly high-temperature processes, influence the carrier lifetime in the semiconductor in various areas of the cell. This lifetime is the sum of the components dependent on the carrier lifetime due to the processes of radiative recombination, Auger recombination, and recombination through trapping in different regions of the cell. The article presents the results of research on the electrical and structural properties of commercially available polycrystalline photovoltaic cells purchased from one of the manufacturers. The issues discussed and the investigations conducted contribute to a deeper understanding and characterization of the solar cell, while the proposed diagnostic tools pave the way for innovation by identifying problems that need to be addressed in the future, including the potential use of new materials.

Article Details

How to Cite
[1]
M. Musztyfaga-Staszuk, “Basic Diagnostics of Electrical and Structural Properties of Solar Cells”, Acta Phys. Pol. A, vol. 147, no. 3, p. 270, Apr. 2025, doi: 10.12693/APhysPolA.147.270.
Section
Special segment

References

EUR-Lex, http://eur-lex.europa.eu/EN/legal-content/summary/an-energy-policy-for-europe.html, "An Energy Policy for Europe", 2007 (access: Sep. 2024)

EUR-Lex, http://eur-lex.europa.eu/eli/dir/2018/2001/oj/eng, "Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources" (OJ EU L328/82), 2018

A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells, John Wiley & Sons, Chichester (UK) 1998

K.W. Böer, Survey of Semiconductor Physics, Van Nostrand Reinhold, New York 1992

M.A. Green, in: 7th E.C. Photovoltaic Solar Energy Conf., Springer, Dordrecht 1987, p. 681

M.A. Green, S.R. Wenham, J. Zhao, in: Proc. of the 11th European Photovoltaic Solar Energy Conf., Montreux 1992, 1993, p. 41

M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. 12, 55 (2004)

Z.M. Jarzębski, Energia Słoneczna: Konwersja Fotowoltaiczna, PWN, Warsaw 1990 (in Polish)

E. Klugmann-Radziemska, Fotowoltaika w Teorii i Praktyce, BTC, Legionowo 2010 (in Polish)

A. Chmielewski, J. Kupecki, Ł. Szabłowski, K.J. Fijałkowski, J. Zawieska, K. Bogdziński, O. Kulik, T. Adamczewski, http://www.wwf.pl/sites/default/files/2020-09/Magazynowanie%20energii%20-%20ANG%20FINAL_0.pdf, "Available and Future Forms of Energy Storage, WWF, Warsaw 2020

Neo Energy Group http://neoenergygroup.pl/czy-magazynowanie-energii-sie-oplacanajwazniejsze-korzysci/, "Czy magazynowanie energii się opłaca? Najważniejsze korzyści" (access: Nov. 2023, in Polish)

D. Głuchy, Poznan Univ. Technol. Acad. J. Electr. Eng. 87, 191 (2016) (in Polish)

Hewalex, http://www.hewalex.pl/wiedza/porady/fotowoltaika/typowe-wady-paneli-fotowoltaicznych-niskiej-jakosci, "Typowe wady paneli fotowoltaicznych niskiej jakości" (access: Sep. 2024, in Polish)

PCC, http://www.products.pcc.eu/pl/blog/dzialanie-oraz-wady-i-zalety-fotowoltaiki/, "Działanie oraz wady i zalety fotowoltaiki" (access: Sep. 2024, in Polish)

Gmina z Energią, Rodzaje uszkodzeń i wady paneli fotowoltaicznych cześć I (access: Sep. 2024, in Polish)}

K. Kuczyński, G. Dymny, Elektro Info, http://www.elektro.info.pl/artykul/fotowoltaika/169158,zastosowanie-kamer-termowizyjnych-do-inspekcji-instalacji-pv, "Zastosowanie kamer termowizyjnych do inspekcji instalacji PV", 2021 (access: Sep. 2024, in Polish)

M.T. Sarniak, Podstawy Fotowoltaiki, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2008 (in Polish)

SBF, http://emiter.net.pl/sites/default/files/fotowoltaiczny-dekalog-dobrych-praktyk.pdf, "Fotowoltaiczny Dekalog Dobrych Praktyk" (access: Nov. 2024, in Polish)

T. Żdanowicz, Materials XII School of Optoelectronics, Kazimierz Dolny, 1997, p. 159

SOEN, http://so-en.pl/konserwacja-paneli-slonecznych-wskazowki-i-najlepsze-praktyki/, "Konserwacja paneli słonecznych: Wskazówki i najlepsze praktyki" (access: Sep. 2024, in Polish)

Czyste Panele, http://czystepanele.com/jakiego-rodzaju-wady-sa-wykrywane-podczas-badania-kamera-termowizyjna/, "5 korzyści wynikających z przeprowadzania przeglądów termowizyjnych instalacji fotowoltaicznych przy pomocy dronów (access: Sep. 2024, in Polish)