Electron–Phonon Interaction and Superconductivity in NaSn3 Intermetallic Compound

Main Article Content

S. Berski
M.W. Jarosik
K.M. Gruszka

Abstract

In this study, the superconducting properties of NaSn3 — an intermetallic compound with an AuCu3-type crystal structure and space group Pm3m (221), where Na atoms occupy the corners and Sn atoms are in face-centered positions — were investigated. The critical  temperature  of  superconductivity (TC) in NaSn3 is found to be 7.038 K. The electron–phonon coupling constant has been calculated to assess its role in superconductivity, with the aim of understanding the mechanisms  that enable NaSn3 to reach a relatively high TC. The analysis includes the calculation of the superconducting order parameter, the wave function renormalization factor for the first Matsubara frequency as a function of temperature, and the specific heat in both the superconducting and normal states. The results provide insight into the electron–phonon interaction and its contribution to the superconducting state in NaSn3, offering a detailed perspective on its potential for higher-temperature superconductivity.

Article Details

How to Cite
[1]
S. Berski, M. Jarosik, and K. Gruszka, “Electron–Phonon Interaction and Superconductivity in NaSn3 Intermetallic Compound”, Acta Phys. Pol. A, vol. 147, no. 3, p. 253, Apr. 2025, doi: 10.12693/APhysPolA.147.253.
Section
Special segment

References

S.B. Dugdale, Phys. Rev. B 83, 012502 (2011)

K. Conder, Supercond. Sci. Technol. 29, 080502 (2016)

M.W. Jarosik, I.A. Wrona, A.M. Duda, Solid State Commun. 219, 1 (2015)

S. Singh, R. Kumar, J. Supercond. Nov. Magn. 32, 3431 (2019)

J.-J. Cao, X.-F. Gou, T.-G. Wang, Comput. Mater. Sci. 150, 491 (2018)

J. Kumar H. Singh, J. Phys. Chem. Solids 156, 110185 (2021)

X.H. Tu, P.F. Liu, B.T. Wang, Phys. Rev. Mater. 3, 054202 (2019)

A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)

Y. Hedjar, S. Saib, A. Muñoz, P. Rodríguez-Hernández, N. Bouarissa, Phys. Status Solidi (b) 258, 2100219 (2021)

J.M. Stratford, M. Mayo, P.K. Allan, O. Pecher, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, C.J. Pickard, A.J. Morris, C.P. Grey, J. Am. Chem. Soc. 139, 7273 (2017)

K. Kawashima, M. Maruyama, M. Fukuma, J. Akimitsu, Phys. Rev. B 82, 094517 (2010)

X. Luo, D.F. Shao, Q.L. Pei, J.Y. Song, L. Hu, Y.Y. Han, X.B. Zhu, W.H. Song, W.J. Lu, Y.P. Sun, J. Mater. Chem. C 3, 11432 (2015)

R. Szczęśniak, A.P. Durajski, J. Supercond. Nov. Magn. 27, 1363 (2014)

R. Szczęśniak, A.P. Durajski, J. Phys. Chem. Solids 74, 641 (2013)

D. Billington, T.M. Llewellyn-Jones, G. Maroso, S.B. Dugdale, Supercond. Sci. Technol. 26, 085007 (2013)

M.J. Winiarski, G. Kuderowicz, K. Górnicka, L.S. Litzbarski, K. Stolecka, B. Wiendlocha, R.J. Cava, T. Klimczuk, Phys. Rev. B 103, 214501 (2021)

Y. Shaidu, O. Akin-Ojo, Comput. Mater. Sci. 118, 11 (2016)